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Abstract

Over the previous decade, there has been an explosion in the amount of data that needs to be stored,

processed, and queried efficiently. Arguably, this is due to the large improvements in data collection methods

and machine learning algorithms. A large portion of the data is naturally geometric, consisting of point

sets or other simple geometric objects. Examples of operations one may want to perform on finite point

sets include ordering the points for storage, sorting, and searching, computing statistical summaries of the

points, or breaking the points into smaller clusters for further processing. In this thesis, we study many of

the aforementioned problems from a theoretical perspective.

In part one we develop a new technique called locality-sensitive orderings. Given a finite point set

P ⊆ [0, 1)d, we describe a collection of orderings (embeddings of P onto an interval on the real line) which

have the property that for any two points in p, q ∈ [0, 1)d, there is an ordering in which all points between p

and q according to the ordering are “close” to either p or q in the original space. Locality-sensitive orderings

leads to surprisingly simple data structures for a variety of low-dimensional proximity based problems in

computational geometry.

In the second part of this thesis, we examine various ways to define the center of a point set, and develop

efficient algorithms for computing these centers in the process. We develop a new randomized algorithm for

computing the approximate centerpoint of a point set. Next, we develop new exact algorithms for finding

the yolk of a point set, whose motivation and definition rises from ideas in voting theory. We explore the

connection between centerpoints and weak ε-nets by presenting some new alternatives to weak ε-nets.

In the third part, we investigate the notion of separation in computational geometry. In particular, we

develop a new approximation algorithm for computing the minimum number of lines needed to separate all

pairs of a given planar point set. Afterwards, we study the problem of active-learning a concept class which

is a convex body. We develop new learning algorithms which assume the computational model has access to

an efficient separation oracle for the given convex body.
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1 Introduction

“
Geometry is an art of making right conclusions from badly drawn pictures.

— Niels H. Abel

This thesis focuses on developing efficient approximation and randomized algorithms for problems with

a geometric flavor. Many problems in practice deal with discrete geometric objects (such as points, lines,

and disks), and it is of interest to obtain the most efficient algorithm possible. Since the inception of the

field approximately fifty years ago, the field has had far reaching applications in machine learning and

probability [10, 88, 120], robotics (such as motion planning [103]), and more generally problems dealing

with large amounts of geometric data (for example, the development of geographic information systems).

See also the discussion by de Berg et al. [18, Section 1.3]. Many of the results in these areas typically follow

from exploiting the underlying geometric nature of the problem, which so often happen to contain rich

mathematical structure. It is for this reason that development of geometric algorithms requires tools from

many areas of computer science and mathematics.

The topics and problems studied in this thesis can be classified into three main parts:

1. Geometric orderings. Given a high dimensional point set, how can we order the points appropriately

so that certain queries and operations can be performed efficiently? For example, it is natural to want

to sort, store, or search through the point set.

2. Geometric centers. Here, we are interested in identifying different objects (of constant description

complexity) which summarize a given point set. Ideally, we want these summaries to be robust to

outliers and efficiently computable.

3. Geometric separation. Given a point set P, we investigate how lines can be used to split P into smaller

clusters. Such an operation is useful for divide and conquer algorithms and has applications in machine

learning. Afterwards, we propose a new computational model which is augmented with access to a

separation oracle for a given convex body. In this model, we develop new learning algorithms where

the concept class consists of arbitrary convex bodies.

In the remainder of this chapter, we discuss the exact problems of interest in each part. Throughout, the

notation Od hides constants that depend on the dimension d.
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1.1 GEOMETRIC ORDERS

In Part I, we describe a technique that leads to new, simpler algorithms for a number of fundamental

proximity problems in low-dimensional Euclidean spaces.

Given data, having an ordering over it is quite useful—it enables one to sort it, store it, and search it

efficiently, among other things. Such an order is less natural for points in the plane (or in higher dimensions).

One way to impose such orders is by using bijective mappings from the plane to the line (which has a natural

order, and thus endows the plane with an order). Such mappings, known as space-filling curves, were

discovered in 1890 by Peano [131]. (See also the book by Sagan [140] for more information on space-filling

curves.) For computational purposes, the Z-order, a somewhat inferior space-filling curve, is the easiest to

implement as it is easily computed by interleaving the bits of the x and y coordinates.

A natural property one desires in an ordering of the plane is that it preserves locality—points that are

close together geometrically remain close in the resulting ordering. Unfortunately, no mapping/ordering

can have this property universally, as the topology of the line and the plane are fundamentally different.

Nevertheless, the Z-order already has some nice locality properties—it maps certain squares to intervals

on the real line, and these squares form a grid that covers the unit square. Furthermore, these grids are

universal, in the sense that there is a grid for any desired resolution.

To get better locality properties, one has to use more orders. It is known that if one uses three orders in the

plane (which is the result of shifting the plane before applying the Z-order), then for any axis parallel square

C inside the unit square1, there exists a square C ′ that contains C, such that C ′ is only slightly bigger than C,

and one of the three orders maps C ′ to an interval.

Our purpose here is to get an even stronger locality property, which requires a larger collection of orderings.

Specifically, consider two points p, p′ ∈ [0, 1]2. The desired property is that there are two squares C and C ′,
and an order σ in the collection, with the following properties: (i) p ∈ C and p′ ∈ C ′, (ii) the diameters of C
and C ′ are only an ε-fraction of the distance between p and p′, (iii) C and C ′ are mapped to two intervals on

the real line by σ, and (iv) these two intervals are adjacent. Such an ordering σ with the desired properties is

illustrated in Figure 1.1.

For algorithmic applications, this collection of orders needs to be small and easily computable. Surprisingly,

we show that the desired collection of orders has size that depends only on ε (and d in general), and these

orders can be easily computed. The result is in Section 2.2.

To see why having such a collection of orders is so useful, consider the problem of computing the

closest pair of points in a given set of points P. Every order in the collection induces an ordering of P.

Furthermore, the closest pair of points are going to be adjacent in one of these orders, and as such can be

readily computed by considering all consecutive pairs of points in the ordering (the number of such pairs

is linear). Furthermore, using balanced binary search trees, it is easy to maintain each ordered set under

1Throughout, we assume all data lies within the unit hypercube [0, 1]d. This can be achieved without loss of generality by scaling
or rotating the data appropriately.
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p

p′

Figure 1.1: Embedding a point set on the real line.

insertions and deletions. Therefore, one can maintain the closest pair of points by storing P in such a data

structure for each of the orderings. As a result, a dynamic problem that in advance might seem somewhat

challenging reduces (essentially) to the mundane task of maintaining ordered sets under insertions and

deletions. Additional applications of this new technique are described in Section 2.3.

1.2 GEOMETRIC CENTERS

For a given point set P in Rd, it is natural to ask for a “summary” of P which is of small size. Such

summaries could include the centroid (center of mass of P) or a collection of points which preserves some

desired properties (for example, ε-nets [88] or coresets [5]). These sets of small size which capture some

property of P are useful for many geometric approximation algorithms.

In Part II, our main focus is developing summaries that are a single point or simple geometric object, while

also being robust to outliers (the centerpoint and the yolk of a point set). In both cases, we are interested in

developing efficient algorithms to compute these quantities.

1.2.1 Centerpoints

Given a point set P ⊂ Rd and a parameter α ∈ (0, 1), a point c ∈ Rd is an α-centerpoint if all closed

halfspaces containing c also contain at least αn points of P. A classical implication of Helly’s theorem is that

a 1/(d + 1)-centerpoint always exists for any point set in Rd [112]. In particular, a centerpoint generalizes

the definition of a median of a one dimensional data set to higher dimensions. For this reason, centerpoints

are useful for divide and conquer algorithms in computational geometry.

It is currently unknown if one can compute a Ω(1/(d + 1))-centerpoint in polynomial time (in the

dimension). The best algorithm currently known is by Chan [33], which computes a 1/(d + 1)-centerpoint in

expected time Od(nd−1 + n log n). For this reason, past focus has been on efficiently computing centerpoints

of slightly worse quality. The first (randomized) polynomial time algorithm was presented by Clarkson et al.

[49], in which they compute a 1/(4d2)-centerpoint in Õ(d9) time2, where Õ hides polylogarithmic factors

2There is an implicit linear dependence on n here which is required to read the input. The algorithm itself performs a single random
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depending on d.

In Chapter 3, we improve the algorithm of Clarkson et al. [49] for approximating a centerpoint. Specifically,

the algorithm (which is a variant of their algorithm) runs in Õ(d7) time, and computes roughly a 1/(d + 2)2-

centerpoint. This improves both the running time, and the quality of centerpoint computed. While the

improvements are small (a factor of d2 roughly in the running time, and a factor of four in the centerpoint

quality), we believe that the new algorithm is simpler. This is the first improvement of the randomized

algorithm of Clarkson et al. [49] in over twenty years.

1.2.2 Exploring the connection between centerpoints and nets

In Chapter 4 we explore a different way to summarize point sets. Specifically, we study variants of weak

ε-nets. From a certain perspective, ε-nets and weak ε-nets can be viewed as a summary of a given point set,

responsible for capturing when a convex body is “heavy” with respect to P. Formally, given a set of points P

of size n and a collection of rangesR (where each range is a subset of P), a set S ⊆ P is an ε-net for P if every

range inR containing at least εn points of P intersects S. A celebrated result of Haussler and Welzl is that

any range space of bounded VC dimension δ (Definition 4.3p43) admits an ε-net whose size depends only on

ε and δ [88, Theorem 4.1p44]. Now, consider the range space (P, C) where C is the collection of all compact

convex bodies in Rd and P ⊂ Rd is a point set of size n. This range space has infinite VC dimension—the

standard ε-net constructions do not work for this range space. The notion of weak ε-nets bypasses this issue

by allowing the net S to use points outside of P. Specifically, any convex body C that contains at least εn

points of P must contain a point of S.

When d is arbitrary, the best known construction of weak ε-nets is by Rubin [137, 138], who constructed

weak ε-nets of size Od(ε
−(d−0.5+α)) for arbitrarily small α > 0 (until recently, the best known bound was

Od(ε
−d log f (d) ε−1), where f (d) = O(d2 log d) by Matoušek and Wagner [114]). We refer the reader to

Section 4.1 for additional background, context, and previous work.

Ideally, it would be preferable to avoid the 1/εO(d) term. Of course, it would be extremely surprising

to have nets which completely avoid this type of dependency on the dimension. For this reason, it is

interesting to consider other variants of weak ε-nets and different computational models which capture

similar properties but can be more easily computed or have a smaller size. To this end, we propose three

new types of nets.

First, we suggest what is called a functional net. Here, we assume that each convex body C in the range

space is equipped with a separation oracle. Namely, given a query point q ∈ Rd, the separation oracle either

reports that q ∈ C or returns a hyperplane separating the two objects. In this model, we show that one can

precompute a net (which has size polynomial in 1/ε and d) such that given any convex body equipped with

a separation oracle, an adaptive sequence of query points can be generated (using only the net) which can

sample of P—whose size depends only on d—and all further computations are done on this random sample. Equivalently, the running
time can be stated as O(n + d9polylog(d)). See also the discussion surrounding Lemma 3.10p37.

4



determine if the given body contains at least εn points of P. Concretely, if the body C contains at least εn

points of P, then one of the queries will be contained in C. However, the converse does not hold: C may

contain less than εn points but still contain a query point (note that the standard weak ε-net definition also

has this property). See Section 4.3 for further discussion on the model and result.

Along the way, we also explore the connection between centerpoints and weak ε-nets. In doing so, we

define a new type of net known as an (ε, α)-center net of a point set P. Specifically, it is a subset S ⊆ Rd such

that for any convex body C containing at least εn points of P, S contains a point which is an α-centerpoint

of P ∩ C. This is a strengthening of regular weak ε-nets, as we require the net to stab each convex body C

roughly in the center (with respect to the distribution of P inside C). In Section 4.4, we show the existence of

an (ε, α)-center net of size Od(1/εd2
), where α = Ωd(1/ log(1/ε)).

Finally, we consider an extension of weak ε-nets where one allows the sample S to contain other geometric

objects. We define a (k, ε)-net to be a collection of k-flats S such that if C is a convex body containing at

least εn points of P, then there exists a k-flat in S intersecting C. Note that (0, ε)-nets are exactly weak ε-nets.

In Section 4.5, we study an even simpler version of the problem, where the ground set is the hypercube

B = [0, 1]d. In particular, for ε ∈ (0, 1) and 0 ≤ k < d, we are interested in computing the smallest set K of

k-flats, such that if C is a convex body with vol(C ∩ B) ≥ ε, then there is a k-flat in K which intersects C. In

this specific setting, rather surprisingly, for k ≥ 1 we obtain nets of size Od(1/ε1−k/d), which is sublinear in

1/ε. We also establish that any such collection of k-flats must have size Ωd(1/ε1−k/d), which matches our

upper bound up to constants depending on d.

1.2.3 The yolk and related concepts

Suppose there is a collection of n voters in Rd, where each dimension represents a specific ideology. In a

fixed dimension, each voter maintains a value along this continuum representing their stance on a given

ideology. Here, consider ideologies such as those which have a natural ordering (left/right or high/low).

For example, a policy to increase/decrease the budget, a policy in criminal law to propose softer/harder

sentences, and other similar social and economic policies. One can interpret Rd as a policy space, and each

point in Rd represents a single policy. In the Euclidean spatial model, each voter is also represented as

a point in Rd which corresponds to their ideal policy. Here, we are interested in the proximity model, in

which voters always prefer policies which are closer to their ideal policy under the regular Euclidean norm

(see [117] for an introduction to voting theory, and discussions on other spatial models). For two policies

x, y ∈ Rd and a set of voters P ⊂ Rd, x beats y if more voters in P prefer policy x compared to y. A plurality

point is a policy which beats all other policies in Rd. For d = 1, the plurality point is the median voter (when

n is odd) [24]. However for d > 1, a plurality point is not always guaranteed to exist [139]. It is known that

one can test if a plurality point exists (and if so, compute it) in O(dn log n) time [21]. Note that the plurality

point is a point of Tukey depth dn/2e—in general this is the largest possible Tukey depth any point can
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have; while the centerpoint is a point that guarantees a “respectable” minority of size at least n/(d + 1).

Since plurality points may not always exist, one generalization of a plurality point is the yolk [115]. A

hyperplane is a median hyperplane if the number of voters lying in each of the two closed halfspaces is at

least dn/2e. The yolk is the ball of smallest radius intersecting all such median hyperplanes. Note that when

a plurality point exists, the yolk has radius zero (equivalently, all median hyperplanes intersect at a common

point).

The yolk has received considerable attention in the literature. The first polynomial time exact algorithm

for computing the yolk in Rd was by Tovey in Od
(
n(d+1)2)

time—in the plane, the running time can be

improved to O(n4) [150]. Following Tovey, the majority of results have focused on computing the yolk

in the plane. In 2018, de Berg et al. [21] gave an O(n4/3 log1+ε n) time algorithm (for any fixed ε > 0) for

computing the yolk. Obtaining a faster exact algorithm remained an open problem. Gudmundsson and

Wong [71, 72] presented a (1 + ε)-approximation algorithm with O(n log7 n log4 ε−1) running time.

In Chapter 5 we develop a randomized algorithm for computing the yolk in Od(nd−1 log n) time. In

particular, when d = 2, this gives an O(n log n) algorithm for computing the yolk exactly, which improves

all previous results [21, 71, 72, 150]. We also explore similarly defined geometric objects (such as the Tukey

and center ball of a point set), and give the first efficient algorithms for computing such objects.

1.3 GEOMETRIC SEPARATION

1.3.1 Separating point sets

For a set P of n points in Rd, a set L of hyperplanes separates P, if for any pair of points of p, q ∈ P,

there is a hyperplane in L that intersects the interior of the segment pq (which also does not contain p or

q). In R2, L is a set of lines. The separability of P, denoted by sep(P), is the size of the smallest set of

hyperplanes that separates P. The separability of a point set captures how grid-like the point set is. In

particular, the separability of the
√

n×√n grid is 2
√

n− 2, while for n points in convex position in the plane

the separability is dn/2e (and this is the worst case assuming general position).

Motivation for studying the separability of a point set follows as separating and breaking point sets,

usually into clusters, is a fundamental task in computer science, needed for divide and conquer algorithms.

It is thus natural to ask what can be done if restricted to lines, and if one can do the partition in a global

fashion. In particular, if we are allowed to partition the point set using the zero set of a polynomial rather

than a line, then some results are known [3]. However dealing with polynomials may be less algorithmically

convenient to work with. Freimer et al. [68] showed that computing the separability of a given point set in

the plane is NP-complete. Other variants of the problem have also been previously studied [25, 29, 54, 64,

100, 127].

In Chapter 6 we develop an efficient approximation algorithm for computing the separability of points
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in the plane. Additionally, for a set of n points P chosen uniformly at random from the unit square

[0, 1]2, we study the random variable sep(P). We prove that with high probability sep(P) = O(n2/3) and

sep(P) = Ω(n2/3 log log n/ log n). This is perhaps surprising, as initially one may expect that the randomly

sampled point set forms a grid-like structure, which can be separated with Θ(
√

n) lines.

1.3.2 Classifying point sets

Suppose we are given a set P of n points in R2 and access to a convex body C via a separation oracle.

Specifically, given a query point z ∈ R2, the oracle either reports that z is inside C, or if not, it returns a

separating line ` such that z lies on one side of `, and C lies on the other. In Chapter 7 we study the problem

of deciding for every point p ∈ P whether or not p is contained in C, using as few oracle queries as possible.

This question can be naturally extended to higher dimensions, where separating hyperplanes are used

instead of separating lines.

In the worst case, there exist instances for which one needs to query the oracle for every input point. It is

for this reason that our goal is to develop instance sensitive algorithms. If the input is structured well, the

algorithm makes few queries. As the input deteriorates in quality, the algorithm may revert to the brute

force solution. We obtain instance sensitive algorithms for 2D and 3D.

This problem can be interpreted as active-learning a convex body in relation to a set of points P that needs

to be classified (as either inside or outside the body), where the queries are via a separation oracle. We are

unaware of any work directly on this problem in the computational geometry community, while there are

some works in the machine learning community that study related problems (usually in more practical and

realistic settings, and in higher dimensions, naturally) [51, 73, 142].

1.4 REMARKS

We close this chapter with some additional remarks.

1.4.1 Computational model

Throughout the thesis, unless otherwise explicitly stated, the model of computational assumed is the

unit-cost real RAM model. This model allows arbitrary real numbers to be stored and assumes arithmetic

operations and comparisons between real numbers can be performed in constant time. This is the standard

model in computational geometry [122, 132, 143].

1.4.2 Low-dimensional computational geometry

In this thesis, the Euclidean dimension d is assumed to be a small, fixed constant (with the single exception

of Chapter 3). For this reason, in most places the constant factors involving d are ignored. This assumption is
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SIAM Journal on Computing, 49(3): 583—600, 2020. Copyright 2020 Society for Industrial and
Applied Mathematics. Originally appeared at ITCS ’19 [38].

Chapter 2

S. Har-Peled and M. Jones. Journey to the center of the point set. ACM Transactions on
Algorithms, 17(1), Article 9, 2020. Originally appeared at SoCG ’19 [80].
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S. Har-Peled and M. Jones. Stabbing convex bodies with lines and flats. 2021. To appear at the
Symposium of Computational Geometry (SoCG 2021) [82].

Chapter 4

S. Har-Peled and M. Jones. Fast algorithms for geometric consensuses. Symposium on Compu-
tational Geometry (SoCG 2020), 50:1–50:16, 2020 [79].

Chapter 5

S. Har-Peled and M. Jones. On separating points by lines. Reprinted by permission from Springer
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2020 Springer Nature. Originally appeared at SODA ’18 [81].
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S. Har-Peled, M. Jones, and R. Saladi. Active-learning a convex body in low dimensions. First
published in Algorithma, 1–33, 2021 by Springer Nature. Reproduced with permission from
Springer Nature. Originally appeared at ICALP ’20. [84].

Chapter 7

Table 1.1: The papers included and their location within the thesis.

required as many algorithms naturally have hidden factors which are exponential in d (e.g., 2O(d), 2O(d log d),

or worse) due to the curse of dimensionality. Throughout this thesis, the notation Od, Ωd, and Θd may be

used to remind the reader that the constants depending on d are hidden.

In many of the problems studied in this thesis, it remains interesting to consider the lower dimensional

versions of the problem (e.g., the yolk, partitioning points, and various proximity-type problems). As one

might expect, the known tools and techniques to solve problems in lower dimensions is much larger and can

lead to intriguing results (some of which are developed in this thesis). For problems which sit in a higher

dimensional space, typically we assume some additional structural parameters about the input instance.

This allows us to develop algorithms where the running time is parametrized by the structure of the instance,

which may be much smaller than the ambient dimension.

1.4.3 Roadmap

The remainder of this thesis is split into three parts: geometric orders, centers, and separation. In Chapter 8,

we conclude the thesis by discussing future work and listing some open problems.

This thesis is a compilation of six papers, containing much of the same contents and results, with a slightly

modified presentation. See Table 1.1 for the citations and appropriate copyright notices.
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Part I

Geometric orderings
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2 Locality-sensitive orderings

“
We are all faced with a series of great opportunities brilliantly disguised as impossible

situations.

— Charles Swindoll

For any constant d and parameter ε ∈ (0, 1/2], we show the existence of (roughly) 1/εd orderings on

the unit cube [0, 1)d, such that for any two points p, q ∈ [0, 1)d close together under the Euclidean metric,

there is a linear ordering in which all points between p and q in the ordering are “close” to p or q. More

precisely, the only points that could lie between p and q in the ordering are points with Euclidean distance at

most ε ‖p− q‖ from either p or q. These orderings are extensions of the Z-order, and they can be efficiently

computed.

Functionally, the orderings can be thought of as a replacement to quadtrees and related structures (like

well-separated pair decompositions). We use such orderings to obtain surprisingly simple algorithms for a

number of basic problems in low-dimensional computational geometry, including (i) dynamic approximate

bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic approximate minimum spanning trees, (iv) static

and dynamic fault-tolerant spanners, and (v) approximate nearest neighbor search.

2.1 BACKGROUND

2.1.1 Quadtrees and Z-order

Consider a point set P ⊆ [0, 1)2, its quadtree, and a depth-first search (DFS) traversal of this quadtree.

One can order the points of P according to this traversal, resulting in some ordering ≺ of the underlying set

[0, 1)2. The relation ≺ is the ordering along some space filling mapping.

One particular ordering of interest is the Z-order. Conceptually speaking, the Z-order can be thought of

as a DFS of the quadtree over [0, 1)2, where the children of each node in the quadtree are always visited in

the same pre-defined order (see Figure 2.1). The Z-order is a total ordering over the points in [0, 1)2, and

can be formally defined by a bijection z from the unit interval [0, 1) to the unit square [0, 1)2. Given a real

number α ∈ [0, 1), with the binary expansion α = 0.x1x2x3 . . . (i.e., α = ∑∞
i=1 xi2−i), the Z-order mapping
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Figure 2.1: Changing the order in which a DFS visits the children of a quadtree node induces a different
ordering of the underlying square (and produces different space filling curves). The top row shows the
Z-order (or Z-order), and the bottom row shows the U-order.

of α is the point z(α) = (0.x2x4x6 . . . , 0.x1x3x5 . . .). We note that the Z-order mapping z is not continuous.

Nevertheless, the Z-order mapping has the advantage of being easy to define. In particular, computing the

Z-order or its inverse is quite easy, if one is allowed bitwise-logical operations—in particular, the ability to

compute compressed quadtrees efficiently is possible only if such operations are available [78]. The approach

extends to higher constant dimensions.

The idea of using the Z-order can be traced back to the work of Morton [121], and it is widely used in

databases and seems to improve performance in practice [94]. Once comparison by Z-order is available,

building a compressed quadtree is no more than storing the points according to the Z-order, and this yields

simple data structures for various problems. For example, Liao et al. [106] and Chan [32, 35, 37] applied the

Z-order to obtain simple efficient algorithms for approximate nearest neighbor search and related problems.

2.1.2 Shifting

The Z-order (and quadtrees) does not preserve distance. That is, two points that are far away might be

mapped to two close-together points, and vice versa. This problem is even apparent when using a grid,

where points that are close together get separated into different grid cells. One way to get around this

problem is to shift the grid (deterministically or randomly) [90]. The same approach works for quadtrees—

one can shift the quadtree constructed for a point set several times such that for any pair of points in the

quadtree, there will be a shift where the two points are in a cell of diameter that is Od(1) times their distance.

(Recall that we use the Od notation to hide constants that depend on d. Similarly, Oε hides dependencies on

ε.) Improving an earlier work by Bern [22], Chan [34] showed that 2dd/2e+ 1 deterministic shifts are enough

in d dimensions. A somewhat similar shifting scheme was also suggested by Feige and Krauthgamer [63].

Random shifting of quadtrees underlines, for example, the approximation algorithm by Arora for Euclidean

TSP [13].

By combining Z-order with shifting, both Chan [35] and Liao et al. [106] observed an extremely simple
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data structure for Od(1)-approximate nearest neighbor search in constant dimensions: just store the points

in Z-order for each of the 2dd/2e+ 1 shifts; given a query point q, find the successor and predecessor of q in

the Z-order by binary search for each of the shifts, and return the closest point found. The data structure

can be easily made dynamic to support insertions and deletions of points, and can also be adapted to find

Od(1)-approximate bichromatic closest pairs.

For approximate nearest neighbor (ANN) search, the Od(1) approximation factor can be reduced to 1 + ε

for any fixed ε > 0, though the query algorithm becomes more involved [35] and unfortunately cannot be

adapted to compute (1 + ε)-approximate bichromatic closest pairs dynamically. (In the monochromatic

case, however, the approach can be adapted to find exact closest pairs, by considering Od(1) successors and

predecessors of each point [35].)

For other proximity-related problems such as spanners and approximate minimum spanning trees (MST),

this approach does not seem to work as well: for example, the static algorithms in [37], which use the

Z-order, still requires explicit constructions of compressed quadtrees and are not easily dynamizable.

2.1.3 Our results

(A) New technique: Locality-sensitive orderings. For any given ε > 0, we show that there is a family of

Od((1/εd) log(1/ε)) orderings of [0, 1)d with the following property: For any p, q ∈ [0, 1)d, there is an

ordering in the family such that all points lying between p and q in this ordering are within distance at

most ε ‖p− q‖ from either p or q (where ‖ · ‖ is the standard Euclidean norm). The order between two

points can be determined efficiently using some bitwise-logical operations. See Theorem 2.1. We refer

to these as locality-sensitive orderings. They generalize the previous construction of 2dd/2e+ 1 shifted

copies of the Z-order, which guarantees the stated property only for a large specific constant (equivalent

to setting ε ≈ d3/2). The new refined property ensures, for example, that a (1 + ε)-approximate nearest

neighbor of a point q can be found among the immediate predecessors and successors of q in these

orderings.

Locality-sensitive orderings immediately lead to simple algorithms for a number of problems, as listed

below. Many of these results are significant simplification of previous work; some of the results are

new.

(B) Approximate bichromatic closest pair. Theorem 2.2 presents a data structure that maintains a (1 + ε)-

approximate closest bichromatic pair for two sets of points in Rd, with an update time of Od,ε(log n),

for any fixed ε > 0 (the hidden factors depending on ε are proportional to (1/εd) log2(1/ε)). Previously,

a general technique of Eppstein [59] can be applied in conjunction with a dynamic data structure for

ANN, but the amortized update time increases by two log n factors.

(C) Dynamic spanners. For a parameter t ≥ 1 and a set of points P in Rd, a graph G = (P, E) is a t-spanner
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for P if for all p, q ∈ P, there is a p-q path in G of length at most t ‖p− q‖. Static algorithms for

spanners have been extensively studied in computational geometry. The dynamic problem appears

tougher, and has also received much attention (see Table 2.1). We obtain a very simple data structure

for maintaining dynamic (1 + ε)-spanners in Euclidean space with an update (insertion and deletion)

time of Od,ε(log n) and having Od,ε(n) edges in total, for any fixed ε > 0. See Theorem 2.3. Although

Gottlieb and Roditty [69] have previously obtained the same update time Od,ε(log n), their method

requires much more intricate details. (Note that Gottlieb and Roditty’s method more generally applies

to spaces with bounded doubling dimension, but no simpler methods have been reported in the

Euclidean setting.)

(D) Dynamic approximate minimum spanning trees. As is well-known [30, 78], a (1 + ε)-approximate

Euclidean MST of a point set P can be computed from the MST of a (1 + ε)-spanner of P. In our

dynamic spanner (and also Gottlieb and Roditty’s method [69]), each insertion/deletion of a point

causes Od,ε(1) edge updates to the graph. Immediately, we thus obtain a dynamic data structure for

maintaining a (1 + ε)-approximate Euclidean MST, with update time (ignoring dependencies on d

and ε) equal to that for the dynamic graph MST problem, which is currently O(log4 n/ log log n) with

amortization [91].

(E) Static and dynamic vertex-fault-tolerant spanners. For parameters k, t ≥ 1 and a set of points P in Rd,

a k-vertex-fault-tolerant t-spanner is a graph G which is a t-spanner and for any P′ ⊆ P of size at most k,

the graph G \ P′ remains a t-spanner for P \ P′. Fault-tolerant spanners have been extensively studied

(see Table 2.2). Locality-sensitive orderings lead to a very simple construction for k-vertex-fault-tolerant

(1 + ε)-spanners, with Od,ε(kn) edges, maximum degree Od,ε(k), and Od,ε(n log n + kn) running time.

See Theorem 2.4. Although this result was known before, all previous constructions (including

suboptimal ones), from Levcopoulos et al.’s [104] to Solomon’s work [146], as listed in Table 2.2, require

intricate details. It is remarkable how effortlessly we achieve optimal Od,ε(k) degree, compared to

the previous methods. (Note, however, that some of the more recent previous constructions more

generally apply to spaces with bounded doubling dimension, and some also achieve good bounds on

other parameters such as the total weight and the hop-diameter.)

Our algorithm can be easily made dynamic, with Od,ε(log n + k) update time. No previous results on

dynamic fault-tolerant spanners were known.

(F) Approximate nearest neighbors. Locality-sensitive orderings lead to a simple dynamic data structure

for (1 + ε)-approximate nearest neighbor search with Od,ε(log n) time per update/query. While this

result is not new [35], we emphasize that the query algorithm is the simplest so far—it is just a binary

search in the orderings maintained.
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reference insertion time deletion time

Roditty [134] log n n1/3 logO(1) n
Gottlieb and Roditty [70] log2 n log3 n
Gottlieb and Roditty [69] log n log n
Theorem 2.3 log n log n

Table 2.1: Previous work and our result on dynamic (1 + ε)-spanners in Rd. All bounds are of the form
Od,ε( · ) (the hidden dependencies on ε are 1/εO(d)).

reference # edges degree running time

Levcopoulos et al. [104] 2O(k)n 2O(k) n log n + 2O(k)n
k2n unbounded n log n + k2n
kn log n unbounded kn log n

Lukovszki [107, 108] kn k2 n logd−1 n + kn log log n
Czumaj and Zhao [52] kn k kn logd n + k2n log k
H. Chan et al. [31] k2n k2 n log n + k2n
Kapoor and Li [96]/Solomon [146] kn k n log n + kn
Theorem 2.4 kn k n log n + kn

Table 2.2: Previous work and our result on static k-vertex-fault-tolerant (1 + ε)-spanners in Rd. All bounds
are of the form Od,ε( · ) (the hidden dependencies on ε are 1/εO(d)).

Computational models and assumptions As stated in Chapter 1, the model of computation we have

assumed is a unit-cost real RAM, supporting standard arithmetic operations and comparisons (but no floor

function), augmented with bitwise-logical operations (bitwise-exclusive-or and bitwise-and), which are

commonly available in programming languages (and in reality are cheaper than some arithmetic operations

like multiplication).

If we assume that input coordinates are integers bounded by U and instead work in the word RAM

model with (log U)-bit words (U ≥ n), then our approach can actually yield sublogarithmic query/update

time. For example, we can achieve Od,ε(log log U) expected time for dynamic approximate bichromatic

closest pair, dynamic spanners, and dynamic ANN, by replacing binary search with van Emde Boas trees [58].

Sublogarithmic algorithms were known before for dynamic ANN [35], but ours is the first sublogarithmic

result for dynamic (1 + ε)-spanners. Our results also answers the open problem of dynamic (1 + ε)-

approximate bichromatic closest pair in sublogarithmic time, originally posed by Chan and Skrepetos

[39].

Throughout, we assume (without loss of generality) that ε is a power of 2; that is, ε = 2−E for some

positive integer E.

2.2 LOCALITY-SENSITIVE ORDERINGS
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Figure 2.2: For n even, a decomposition of Kn into n/2 Hamiltonian paths.

2.2.1 Grids and orderings

Definition 2.1. For a set X, consider a total order (or ordering)≺ on the elements of X. Two elements x, y ∈ X

are adjacent if there is no element z ∈ X, such that x ≺ z ≺ y or y ≺ z ≺ x. For two elements x, y ∈ X such

that x ≺ y, the interval [x, y) is the set [x, y) = {x} ∪ {z ∈ X | x ≺ z ≺ y}.

The following is well known, and goes back to a work by Walecki in the 19th century [7]. We include a

proof for the sake of completeness. (If we don’t care about the constant factor in the number of orderings,

there are other straightforward alternative proofs.)

Lemma 2.1. For n elements {0, . . . , n− 1}, there is a set O of dn/2e orderings of the elements, such that, for all

i, j ∈ {0, . . . , n− 1}, there exists an ordering σ ∈ O in which i and j are adjacent.

Proof: As mentioned earlier this is well known [7]. Assume n is even, and consider the clique Kn, with its

vertices v0, . . . , vn−1. The edges of this clique can be covered by n/2 Hamiltonian paths that are edge disjoint.

Tracing one of these path gives rise to one ordering, and doing this for all paths results with orderings with

the desired property, since edge vivj is adjacent in one of these paths.

To get this cover, draw Kn by using the vertices of an n-regular polygon, and draw all the edges of Kn as

straight segments. For every edge vivi+1 of Kn there are exactly n/2 parallel edges with this slope (which

form a matching). Let Mi denote this matching. Similarly, for the vertex vi, consider the segment vivi+n/2

(indices are here modulo n), and the family of segments (i.e., edges) of Kn that are orthogonal to this segment.

This family is also a matching M′i of size n/2− 1. Observe that σi = Mi ∪M′i forms a Hamiltonian path, as

shown in Figure 2.2. Since the slopes of the segments in Mi and M′i are unique, for i = 0, . . . , n/2− 1, it

follows that σ0, . . . , σn/2−1 are an edge-disjoint cover of all the edges of Kn by n/2 Hamiltonian paths.

If n is odd, use the above construction for n + 1, and delete the redundant symbol from the computed

orderings. QED.

Definition 2.2. Consider an axis-parallel cube C ⊆ Rd with side length `. Partitioning it uniformly into a

t× t× · · · × t grid G creates the t-grid of C. The grid G is a set of td identically sized cubes with side length

`/t.
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Figure 2.3: One ordering of a set of cells.

For a cube 2 ⊆ Rd, its diameter is diam(2) = sidelength(2)
√

d.

By Lemma 2.1 we obtain the following result.

Corollary 2.1. For a t-grid G of an axis-parallel cube C ⊆ Rd, there is a set O(t, d) of O(td) orderings, such that for

any 21,22 ∈ G, there exists an order σ ∈ O(t, d) where 21 and 22 are adjacent in σ.

2.2.2 ε-Quadtrees

Definition 2.3. An ε-quadtree Tε is a quadtree-like structure, built on a cube with side length `, where each

cell is partitioned into a (1/ε)-grid. The construction then continues recursively into each grid cell of interest.

As such, a node in this tree has up to 1/εd children, and a node at level i ≥ 0 has an associated cube of side

length `εi. When ε = 1/2, this is a regular quadtree.

Lemma 2.2. Let E > 0 be an integer, ε = 2−E, and T be a regular quadtree over [0, 2)d. There are ε-quadtrees

T 0
ε , . . . , T E−1

ε , such that the collection of cells at each level in T is contained in exactly one of these ε-quadtrees.

Proof: For i = 0, . . . , E− 1, construct the ε-quadtree T i
ε using the cube

[
0, 2E−i+1)d ⊇ [0, 2)d as the root. Now

for j ∈ {0, . . . , E− 1}, observe that the collection of cells at levels j, j + E, j + 2E, . . . , of T will also be in the

quadtree T j
ε . Indeed, any node at level j + `E in T corresponds to a cell of side length 2−(j+`E)+1. Now in

the (`+ 1)th level of quadtree T j
ε , this same node will have side length ε`+12E−j+1 = 2−(j+`E)+1. QED.

Consider an ε-quadtree Tε. Every node has up to 1/εd children. Consider any ordering σ of
{

1, . . . , 1/εd
}

.

Conceptually speaking, this induces a DFS of Tε that always visits the children of a node in the order

specified by σ. This induces an ordering on the points in the cube which is the root of Tε. Indeed, for any two

points, imagine storing them in an ε-quadtree—this implies that the two points are each stored in their own

leaf node, which contains no other point of interest. Now, independently of what other points are stored

in the quadtree, this DFS traversal would visit these two points in the same order. This can be viewed as a

space filling curve (which is not continuous) which maps a cube to an interval. This is a generalization of

the Z-order. In particular, given a point set stored in Tε, and given σ, one can conceptually order the points

according to this DFS traversal, resulting in 1-dimensional ordering of the points. We denote the resulting

ordering by (Tε, σ).
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In Section 2.2.3, we show that given (Tε, σ), the order of any two points in [0, 2)d can be determined

efficiently, and avoids explicitly handling this DFS traversal of Tε. Alternatively, the DFS on Tε (according to

σ) is implicitly defined by the total ordering (Tε, σ) of points in [0, 2)d.

Definition 2.4. Let Π be the set of all orderings of [0, 2)d, induced by picking one of the lg(1/ε) trees of

Lemma 2.2, together with an ordering σ ∈ O(1/ε, d), as defined by Lemma 2.1. Each ordering in Π is an

ε-ordering.

Suppose there are two points which lie in a quadtree cell that has diameter close to their distance. Formally,

consider two points p, q ∈ [0, 1)d, a parameter ε > 0, such that p, q are both contained in a cell 2 of the

regular quadtree T with diam(2) ≤ 2 ‖p− q‖. Then, there is an ε-quadtree Tε that has 2 as a node, and let

2p and 2q be the two children of 2 in Tε, containing p and q respectively. Furthermore, there is an ordering

σ ∈ O(1/ε, d), such that 2p and 2q are adjacent. As such, the cube 2p (resp., 2q) corresponds to an interval

[x, x′) (resp., [x′, x′′)) in the ordering (Tε, σ), and these two intervals are adjacent. In particular, this implies

that all points lying between p and q in σ have distance at most 2ε ‖p− q‖ from p or q.

If the above statement were true for all pairs of points, then this would imply the main result (Theorem 2.1).

However, consider the case when there are two points close together, but no appropriately sized quadtree

cell contains both p and q. In other words, two points that are close together might get separated by nodes

that are much bigger in the quadtree, and this would not provide the guarantee of the main result. However,

this issue can be resolved using shifting. We need the following result of Chan [34, Lemma 3.3]

Lemma 2.3. Consider any two points p, q ∈ [0, 1)d, and let T be the infinite quadtree of [0, 2)d. For D = 2 dd/2e
and i = 0, . . . , D, let vi = (i/(D + 1), . . . , i/(D + 1)). Then there exists an i ∈ {0, . . . , D}, such that p + vi and

q + vi are contained in a cell of T with side length ≤ 2(D + 1) ‖p− q‖.

2.2.3 Comparing two points according to an ε-ordering

We now show how to efficiently compare two points in P according to a given ε-ordering σ with a shift

vi. The shift can be added to the two points directly, and as such we can focus on comparing two points

according to σ.

First, we show how to compare the msb of two numbers using only bitwise-exclusive-or and bitwise-and

operations. We remark that Observation 2.1 (A) is from Chan [35].

Observation 2.1. Let ⊕ denote the bitwise-exclusive-or operator. Let msb(a) := − blg ac to be the index of the most

significant bit in the binary expansion of a ∈ [0, 2). Given a, b ∈ [0, 2), one can compare the msb of two numbers

using the following:

(A) msb(a) > msb(b) if and only if a < b and a < a⊕ b.

(B) msb(a) = msb(b) if and only if a⊕ b ≤ a ∧ b, where ∧ is the bitwise-and operator.
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Proof: (A) Observe that if msb(a) > msb(b), then 2−msb(a) ≤ a < 2−msb(a)+1 ≤ 2−msb(b) ≤ b. Since

msb(a) > msb(b) and a < b, we have msb(a⊕ b) = msb(b). As such, we have a < 2−msb(a)+1 ≤ 2−msb(b) =

2−msb(a⊕b) ≤ a⊕ b.

Assume that a < b and a < a ⊕ b. Since a < b, it must be that msb(a) ≥ msb(b). Observe that if

msb(a) = msb(b), then a⊕ b < a, which is impossible. It follows that msb(a) > msb(b), as desired.

(B) Follows by applying (A) twice (in addition to using the inequalities a ∧ b ≤ a and a ∧ b ≤ b), one can

show that a⊕ b ≤ a ∧ b if and only if msb(a) ≥ msb(b) and msb(b) ≥ msb(a). QED.

Lemma 2.4. Let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two distinct points in P ⊆ [0, 2)d and σ ∈ Π be an

ε-ordering over the cells of some ε-quadtree Tε storing P. Then one can determine if p ≺σ q using O(d log(1/ε))

bitwise-logical operations.

Proof: Recall ε is a power of two and E = lg(1/ε). In order to compare p and q, for i = 1, . . . , d, compute

ai = pi ⊕ qi. Find an index i′ such that msb(ai′) ≤ msb(ai) for all i. Such an index can be computed with

O(d) msb comparisons (using Observation 2.1 (A)). Given pi′ and qi′ , we next determine the place in which

pi′ and qi′ first differ in their binary representation. Note that because ε is a power of two, each digit in the

base 1/ε expansion of pi′ corresponds to a block of E bits in the binary expansion of pi′ . Suppose that pi′ and

qi′ first differ inside the hth block at an index j ∈ {1, . . . E}.
The algorithm now locates this index j. To do so, for j = 1, . . . , E, let bj = 2E−j/(2E − 1) ∈ (0, 1] be

the number whose binary expansion has a 1 in positions j, j + E, j + 2E, . . ., and 0 everywhere else. For

j = 1, . . . , E, compute bj ∧ ai′ and check if msb(ai′) = msb(bj ∧ ai′) (using Observation 2.1 (B)). When the

algorithm finds such an index j obeying this equality, it exits the loop. We know that pi′ and qi′ first differ in

the jth position inside the hth block (the value of h is never explicitly computed).

It remains to extract the E bits from the hth block in each coordinate p1, . . . , pd. For i = 1, . . . , d, let

Bi ∈ [0, 1]E be the bits inside the hth block of pi. For k = 1, . . . , E, set

Bi,k = 1

[
msb(2j−kai′) = msb((2j−kai′) ∧ pi)

]
,

where 1[·] is the indicator function). By repeating a similar process for all q1, . . . , qd, we obtain the coordinates

of the cells in which p and q differ. We can then consult σ to determine whether or not p ≺σ q.

This implies that p and q can be compared using O(d log(1/ε)) operations by Observation 2.1. QED.

Remark In the word RAM model for integer input, the extra log(1/ε) factor in the above time bound can

be eliminated: msb can be explicitly computed in O(1) time by a complicated algorithm of Fredman and

Willard [67]; this allows us to directly jump to the right block of each coordinate and extract the relevant bits.

(Furthermore, assembly operations performing such computations are nowadays available on most CPUs.)
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2.2.4 The result

Theorem 2.1. For ε ∈ (0, 1/2], there is a set Π+ of Od(log(1/ε)/εd) orderings of [0, 1)d, such that for any two

points p, q ∈ [0, 1)d there is an ordering σ ∈ Π+ defined over [0, 1)d, such that for any point u with p ≺σ u ≺σ q it

holds that either ‖p− u‖ ≤ ε ‖p− q‖ or ‖q− u‖ ≤ ε ‖p− q‖.
Furthermore, given such an ordering σ, and two points p, q, one can compute their ordering, according to σ, using

O(d log(1/ε)) arithmetic and bitwise-logical operations.

Proof: Let Π+ be the set of all orderings defined by picking an ordering from Π, as defined by Definition 2.4

using the parameter ε, together with a shift from Lemma 2.3.

Consider any two points p, q ∈ [0, 1)d. By Lemma 2.3 there is a shift for which the two points fall into a

quadtree cell 2 with side length at most 2(D + 1) ‖p− q‖. Next, there is an ε-quadtree Tε that contains 2,

and the two children that correspond to two cells 2p and 2q with side length at most 2(D + 1)ε ‖p− q‖,
which readily implies that the diameter of these cells is at most 2(D + 1)

√
dε ‖p− q‖. Furthermore, there is

an ε-ordering in Π such that all the points of 2p are adjacent to all the points of 2q in this ordering. This

implies the desired claim, after adjusting ε by a factor of 2(D + 1)
√

d (and rounding to a power of 2). QED.

From now on, we refer to the set of orderings Π+ in the above Theorem as locality-sensitive orderings. We

remark that by the readjustment of ε in the final step of the proof, the number of locality-sensitive orderings

when including the factors involving d is O(d3/2)d · (1/εd) log(1/ε).

2.2.5 Discussion

Connection to locality-sensitive hashing Let P be a set of n points in Hamming space [0, 1]d. Consider

the decision version of the (1 + ε)-approximate nearest neighbor problem. Specifically, for a pre-specified

radius r and any given query point q, we would like to efficiently decide whether or not there exists a point

p ∈ P such that ‖q− p‖1 ≤ (1 + ε)r or conclude that all points in P are at least distance r from q. The

locality-sensitive hashing (LSH) technique [92] implies the existence of a data structure supporting this type

of decision query in time O(dn1/(1+ε) log n) time (which is correct with high probability) and using total

space O(dn1+1/(1+ε) log n). Similar results also hold in the Euclidean setting.

At a high level, LSH works as follows. Start by choosing k := k(ε, r, n) indices in [d] at random (with

replacement). Let R denote the resulting multiset of coordinates. For each point p ∈ P, let pR be the

projection p onto these coordinates of R. We can group the points of P into buckets, where each bucket

contains points with the same projection. Given a query point q, we check if any of the points in the same

bucket as q is at distance at most (1 + ε)r from q. This construction can also be repeated a sufficient number

of times in order to guarantee success with high probability.

The idea of bucketing can also be viewed as an implicit ordering on the randomly projected point set by

ordering points lexicographically according to the k coordinates. In this sense, the query algorithm can be
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viewed as locating q within each of the orderings, and comparing q to similar points nearby in each ordering.

From this perspective, every locality-sensitive ordering can be viewed as an LSH scheme. Indeed, for a given

query point q, the approximate nearest neighbor to q can be found by inspecting the elements adjacent to q

in each of the locality-sensitive orderings and returning the closest point to q found (see Theorem 2.5).

Of course, the main difference between the two schemes is that for every fixed ε, the number of “orderings”

in an LSH scheme is polynomial in both d and n. While for locality-sensitive orderings, the number of

orderings remains exponential in d. This trade-off is to be expected, as locality-sensitive orderings guarantee

a much stronger property than that of an LSH scheme.

Extension of locality-sensitive orderings to other norms in Euclidean space The Lp-norm, for p ≥ 1, of a

vector x ∈ Rd is defined as ‖x‖p =
(
|x1|p + · · ·+ |xn|p

)1/p. The L∞-norm, or maximum norm, is defined as

‖x‖∞ = max(|x1| , . . . , |xn|).
The result of Theorem 2.1 also holds for any Lp-norm. The key change that is needed is in the proof of

Lemma 2.3: For any two points s, t ∈ [0, 1)d, there exists a shift v such that s + v and t + v are contained in a

quadtree cell of side length at most 2(D + 1) ‖s− t‖p. This extension follows easily from the proof of the

Lemma. Theorem 2.1 then follows by adjusting ε by a factor of 2(D + 1)d1/p in the last step, implying that

the number of orderings will be O(d1+1/p)d(1/εd) log(1/ε). (For the L∞-norm, ε only needs to be adjusted

by a factor of 2(D + 1).)

Extension of locality-sensitive orderings for doubling metrics A metric space with (low) doubling

dimension is an abstraction of a low-dimensional Euclidean space. Formally, a metric space (M, d) has

doubling dimension λ if any ball ofM of radius r can be covered by at most 2λ balls of half the radius (i.e.,

r/2). It is known that Rd has doubling dimension O(d) [152]. We point out that locality-sensitive orderings

still exist in this case, but they are less constructive in nature, since one needs to be provided with all the

points of interest in advance.

For a point set P ⊆M, the analogue of a quadtree for a metric space is a net tree [85]. A net tree can be

constructed as follows (the construction algorithm described here is somewhat imprecise): The root node

corresponds to the point set P ⊆M. Compute a randomized partition of P of diameter 1/2 (assume P has

diameter one) [78, Chapter 26], and for each cluster in the partition, create an associated node and hang it on

the root. The tree is computed recursively in this manner, at each level i computing a random partition of

diameter 2−i. The leaves of the tree are points of P.

As with quadtrees, it is possible during this randomized construction for two nearby points to be placed

in different clusters and be separated further down the tree. If ` = d(p, q) for two points p, q ∈ P, then the

probability that p and q lie in different clusters of diameter r = 2−i in the randomized partition is at most

O((`/r) log n) [62]. In particular, for r ≈ 1/(` log n), the probability that p and q are separated is at most a

constant. If we want this property to hold with high probability for all pairs of points, one needs to construct
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O(log n) (randomly constructed) net trees of P. (This corresponds to randomly shifting a quadtree O(log n)

times in the Euclidean setting.)

Given such a net tree T, each node has I = 2O(λ) children. We can arbitrarily and explicitly number the

children of each node by a distinct label from {1, . . . , I}. One can define an ordering of such a tree as we

did in the Euclidean case, except that the gap (in diameter) between a node and its children is O(ε/ log n)

instead of ε. Repeating our scheme in the Euclidean case, this implies that one would expect to require

(ε−1 log n)O(λ) orderings of P.

This requires having all the points of P in advance, which is a strong assumption for a dynamic data

structure (as in some of the applications below). For example, Gottlieb and Roditty [69] show how to

maintain dynamic spanners in a doubling metric, but only assuming that after a point has been deleted from

P, the distance between the deleted point and a point currently in P can still be computed in constant time.

Recently, Filtser and Le recently gave a construction of locality-sensitive orderings for metrics with doubling

dimension λ of size O(1/εO(λ)) [66], which removes the dependency on n and improves on the construction

sketched above.

2.3 APPLICATIONS

2.3.1 Bichromatic closest pair

Given an ordering σ ∈ Π+, and two finite sets of points R, B in Rd, let Z = Z(σ, R, B) be the set of all

pairs of points in R× B that are adjacent in the ordering of R ∪ B according to σ. Observe that inserting

or deleting a single point from these two sets changes the contents of Z by a constant number of pairs.

Furthermore, a point participates in at most two pairs.

Lemma 2.5. Let R and B be two sets of points in [0, 1)d, and let ε ∈ (0, 1) be a parameter. Let σ ∈ Π+ be a

locality-sensitive ordering (see Theorem 2.1). Then, one can maintain the set Z = Z(σ, R, B) under insertions and

deletions to R and B. In addition, one can maintain the closest pair in Z (under the Euclidean metric). Each update

takes O(d log n log(1/ε)) time, where n is the total size of R and B during the update operation.

Proof: Maintain two balanced binary search trees TR and TB storing the points in R and B, respectively,

according to the order σ. Insertion, deletion, predecessor query and successor query can be implemented in

O(d log(1/ε) log n) time (since any query requires O(log n) comparisons each costing O(d log(1/ε)) time by

Lemma 2.4). We also maintain a min-heap of the pairs in Z sorted according to the Euclidean distance. The

minimum is the desired closest pair. Notice that a single point can participate in at most two pairs in Z .

We now explain how to handle updates. Given a newly inserted point r (say a red point that belongs to R),

we compute the (potential) pairs it participates in, by computing its successor r′ in R, and its successor b′ in

B. If r ≺σ b′ ≺σ r′ then the new pair rb′ should be added to Z . The pair before r in the ordering that might
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use r is computed in a similar fashion. In addition, we recompute the predecessor and successor of r in R,

and we recompute the pairs they might participate in (deleting potentially old pairs that are no longer valid).

Deletion is handled in a similar fashion—all points included in pairs with the deleted point recompute

their pairs. In addition, the successor and predecessor (of the same color) need to recompute their pairs.

This all requires a constant number of queries in the two trees, and thus takes the running time as stated.QED.

Theorem 2.2. Let R and B be two sets of points in [0, 1)d, and let ε ∈ (0, 1/2] be a parameter. Then one can

maintain a (1 + ε)-approximation to the bichromatic closest pair in R× B under updates (i.e., insertions and deletions)

in Od(log n log2(1/ε)/εd) time per operation, where n is the total number of points in the two sets. The data

structure uses Od(n log(1/ε)/εd) space, and at all times maintains a pair of points r ∈ R, b ∈ B, such that

‖r− b‖ ≤ (1 + ε)d(R, B), where d(R, B) = minr∈R,b∈B ‖r− b‖.

Proof: We maintain the data structure of Lemma 2.5 for all the locality-sensitive orderings of Theorem 2.1.

All the good pairs for these data structures can be maintained together in one global min-heap. The claim is

that the minimum length pair in this heap is the desired approximation.

To see that, consider the bichromatic closest pair r ∈ R and b ∈ B. By Theorem 2.1 there is a locality-

sensitive ordering σ, such that the interval I in the ordering between r and b contains points that are in

distance at most ` = ε ‖r− b‖ from either r or b. In particular, let Pr (resp., Pb) be all the points in I in

distance at most ` from r (resp., b). Observe that Pr ⊆ R, as otherwise, there would be a bichromatic pair in

PR, and since the diameter of this set is at most `, this would imply that (r, b) is not the closest bichromatic

pair—a contradiction. Similarly, Pb ⊆ B. As such, there must be two points b′ ∈ B and r′ ∈ R, that are

consecutive in σ, and this is one of the pairs considered by the algorithm (as it is stored in the min-heap). In

particular, by the triangle inequality, we have

∥∥r′ − b′
∥∥ ≤ ∥∥r′ − r

∥∥+ ‖r− b‖+
∥∥b− b′

∥∥ ≤ 2`+ ‖r− b‖ ≤ (1 + 2ε) ‖r− b‖ .

The theorem follows after adjusting ε by a factor of 2. QED.

Remark In the word RAM model, for integer input in {1, . . . , U}d, the update time can be improved to

Od((log log U) log2(1/ε)/εd) expected, by using van Emde Boas trees [58] in place of the binary search trees

(and the min-heaps as well). With standard word operations, we may not be able to explicitly map each

point to an integer in one dimension following each locality-sensitive ordering, but we can still simulate van

Emde Boas trees on the input as if the mapping has been applied. Each recursive call in the van Emde Boas

recursion focuses on a specific block of bits of each input coordinate value (after shifting); we can extract

these blocks, and perform the needed hashing operations on the concatenation of these blocks over the d

coordinates of each point.
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2.3.2 Dynamic spanners

Definition 2.5. For a set of n points P in Rd and a parameter t ≥ 1, a t-spanner of P is an undirected graph

G = (P, E) such that for all p, q ∈ P,

‖p− q‖ ≤ dG(p, q) ≤ t‖p− q‖,

where dG(p, q) is the length of the shortest path from p to q in G using the edge set E.

Using a small modification of the results in the previous section, we easily obtain a dynamic (1 + ε)-

spanner. Note that there is nothing special about how the data structure in Theorem 2.2 deals with the

bichromatic point set. If the point set is monochromatic, modifying the data structure in Lemma 2.5 to

account for the closest monochromatic pair of points leads to a data structure with the same bounds and

maintains the (1 + ε)-approximate closest pair.

The construction of the spanner is very simple: Given P and ε ∈ (0, 1), maintain orderings of the points

specified by Π+ (see Theorem 2.1). For each σ ∈ Π+, let Eσ be the edge set consisting of edges connecting

two consecutive points according to σ, with weight equal to their Euclidean distance. Thus |Eσ| = n− 1.

Our spanner G = (P, E) then consists of the edge set E =
⋃

σ∈Π+ Eσ.

Theorem 2.3. Let P be a set of n points in [0, 1)d and ε ∈ (0, 1/2]. One can compute a (1 + ε)-spanner G of P with

Od(n log(1/ε)/εd) edges, where every vertex has degree Od(log(1/ε)/εd). Furthermore, a point can be inserted or

deleted in Od(log n log2(1/ε)/εd) time, where each insertion or deletion creates or removes at most Od(log(1/ε)/εd)

edges in the spanner.

Proof: The construction is described above. The same analysis as in the proof of Theorem 2.2 implies the

number of edges in G and the update time.

It remains to prove that G is a spanner. By Theorem 2.1, for any pair of points s, t ∈ P, there is a locality-

sensitive ordering σ ∈ Π+, such that the σ-interval [s, t) contains only points that are in distance at most

ε ‖s− t‖ from either s or t. In particular, there must be two points in s′, t′ ∈ P that are adjacent in σ, such

that one of them, say s′ (resp., t′) is in distance at most ε ‖s− t‖ from s (resp., t). As such, the edge s′t′ exists

in the graph being maintained.

This property is already enough to imply that this graph is a (1 + cε)-spanner for a sufficiently large

constant c—this follows by an induction on the distances between the points (specifically, in the above,

we apply the induction hypothesis on the pairs s, s′ and t, t′). We omit the easy but somewhat tedious

argument—see [30] or [78, Theorem 3.12] for details. The theorem follows after adjusting ε by a factor

of c. QED.
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2.3.3 Static and dynamic vertex-fault-tolerant spanners

Definition 2.6. For a set of n points P in Rd and a parameter t ≥ 1, a k-vertex-fault-tolerant t-spanner of P,

denoted by (k, t)-VFTS, is a graph G = (P, E) such that

(i) G is a t-spanner (see Definition 2.5), and

(ii) For any P′ ⊆ P of size at most k, the graph G \ P′ is a t-spanner for P \ P′.

A (k, 1 + ε)-VFTS can be obtained by modifying the construction of the (1 + ε)-spanner in Section 2.3.2.

Construct a set of locality-sensitive orderings Π+. For each σ ∈ Π+ and each p ∈ P, connect p to its k + 1

successors and k + 1 predecessors according to σ with edge weights equal to the Euclidean distances. Thus

each ordering maintains O(nk) edges and there are O(|Π+| kn) = Od(kn log(1/ε)/εd) edges overall. We

now prove that this graph G is in fact a (k, 1 + ε)-VFTS.

Theorem 2.4. Let P be a set of n points in [0, 1)d and ε ∈ (0, 1/2]. One can compute a k-vertex-fault-tolerant

(1 + ε)-spanner G for P in time

Od

(
(n log n log(1/ε) + kn) log(1/ε)/εd

)
.

The number of edges is Od(kn log(1/ε)/εd) and the maximum degree is bounded by Od(k log(1/ε)/εd).

Furthermore, one can maintain the k-vertex-fault-tolerant (1 + ε)-spanner G under insertions and deletions of

points in Od
(
(log n log(1/ε) + k) log(1/ε)/εd) time per operation.

Proof: The construction algorithm, number of edges, and maximum degree follows from the discussion

above. So, consider deleting a set P′ ⊆ P of size at most k from G. Consider an ordering σ ∈ Π+ with the

points P′ removed. By the construction of G, all the pairs of points of P \ P′ that are (now) adjacent in σ

remain connected by an edge in G \ P′. The argument of Theorem 2.3 implies that the remaining graph is

spanner. We conclude that G \ P′ is a (1 + ε)-spanner for P \ P′.

As for the time taken to handle insertions and deletions, one simply maintains the orderings of the points

using balanced search trees. After an insertion of a point to one of the orderings in O(log n log(1/ε)) time,

O(k) edges have to be added and deleted. Therefore inserting a point takes O
(
(log n log(1/ε) + k) |Π+|

)
=

Od
(
(log n log(1/ε) + k) log(1/ε)/εd) time total. Deletions are handled similarly.

The total construction time follows by inserting each of the points into the dynamic data structure. QED.

2.3.4 Dynamic approximate nearest neighbors

Another application of the same data structure in Theorem 2.2 is supporting (1 + ε)-approximate nearest

neighbor queries. In this scenario, the data structure must support insertions and deletions of points and the

following queries: given a point q, return a point t ∈ P such that ‖q− t‖ ≤ (1 + ε)minp∈P ‖q− p‖.
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Theorem 2.5. Let P be a set of n points in [0, 1)d. For a given ε ∈ (0, 1/2], one can build a data structure

using Od(n log(1/ε)/εd) space, that supports insertion and deletion in time Od(log n log2(1/ε)/εd). Further-

more, given a query point q ∈ [0, 1)d, the data structure returns a (1 + ε)-approximate nearest neighbor in P in

Od(log n log2(1/ε)/εd) time.

Proof: Maintain the data structure of Lemma 2.5 for all locality-sensitive orderings of Theorem 2.1, with

one difference: Since the input is monochromatic, for each locality-sensitive ordering σ ∈ Π+, we store the

points in a balanced binary search tree according to σ. The space and update time bounds easily follow by

the same analysis.

Given a query point q ∈ [0, 1)d, for each of the orderings the algorithm inspects the predecessor and

successor to q. The algorithm returns the closest point to q encountered. We claim that the returned point p

is the desired approximate nearest neighbor.

Let p? ∈ P be the nearest neighbor to q and ` = ‖q− p?‖. By Theorem 2.1, there is a locality-sensitive

ordering σ ∈ Π+ such that the σ-interval I = [p?, q) contains points that are of distance at most ε` from p?

or q (and this interval contains at least one point of P, namely, p?). Note that no point of P can be at distance

less than ε` to q. Thus, the point p ∈ P adjacent to q in I is of distance at most ε` from p?. Therefore, for such

a point p, we have ‖p− q‖ ≤ ‖p− p?‖+ ‖p? − q‖ ≤ (1 + ε)`.

The final query time follows from the time taken for these predecessor and successor queries, as in the

proof of Lemma 2.5. QED.
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Part II

Geometric centers
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3 Approximating centerpoints efficiently

“
A change of perspective is worth 80 IQ points.

— Alan Kay

Let P be a set of n points in Rd. For a parameter α ∈ (0, 1), an α-centerpoint of P is a point p ∈ Rd such

that all closed halfspaces containing p also contain at least αn points of P. Such a point may not always

exist for a given α, however Rado’s centerpoint theorem implies that a 1/(d + 1)-centerpoint always exists

[133]. We revisit an algorithm of Clarkson et al. [49], that computes (roughly) a 1/(4d2)-centerpoint in

Õ(d9) randomized time, where Õ hides polylogarithmic terms. We present an improved algorithm that can

compute centerpoints with quality arbitrarily close to 1/d2 and runs in randomized time Õ(d7). While the

improvements are (arguably) mild, it is the first refinement of the algorithm by Clarkson et al. [49] in over

twenty years. The new algorithm is simpler, and the running time bound follows by a simple random walk

argument, which we believe to be of independent interest. In Chapter 4 we present several new applications

of the improved centerpoint algorithm and explore the connections between centerpoints and weak ε-nets.

3.1 BACKGROUND

3.1.1 Computing centerpoints

For a given point p, deciding whether p is indeed a 1/(d + 1)-centerpoint is known to be co-NP-complete

[149]. Furthermore, the problem of computing a centerpoint lies in the complexity class PPAD∩ PLS [118].

The fastest currently known algorithm for computing a centerpoint is by Chan [33], which computes a

1/(d + 1)-centerpoint in expected time O(nd−1 + n log n). For this reason, past focus has been on efficiently

computing centerpoints of slightly worse quality. The first (randomized) polynomial time algorithm was

presented by Clarkson et al. [49], in which they compute (roughly) a 1/(4d2)-centerpoint in Õ(d9) time

together with a random sampling step, where Õ hides polylogarithmic factors depending on d. Since the

work of Clarkson et al. [49], there has been a variety of deterministic and randomized algorithms proposed

for computing centerpoints [87, 119, 124, 136]. We summarize previously known results in Table 3.1. In

many of these cited algorithms, they return not only an α-centerpoint but in addition a proof of the depth of
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reference quality running time notes

Chan [33]
1

d + 1
O(nd−1 + n log n) Las Vegas algorithm

Miller and Sheehy [119]
1

2(d + 1)2 O(n1+log2 d) deterministic

Mulzer and Werner [124]
1

4(d + 1)3 dO(log d)n deterministic

Har-Peled and Zhou [87]
1− γ

2(d + 1)2 dO(log(d/γ))n deterministic

Rolnick and Soberón [136]
1− γ

d(d + 1)
O(d/γ)O(d) + Ow(n4 log ϕ−1) Monte Carlo (prob. ≥ 1− ϕ)

Clarkson et al. [49]
2

3e(d + 2)(d + 1)
O(d9 log d + d8 log2 ϕ) Monte Carlo (prob. ≥ 1− ϕ)

Our result, Theorem 3.1
1− γ

(d + 2)2 O(γ−4d7 log3 d log3(γ−1 ϕ−1)) Monte Carlo (prob. ≥ 1− ϕ)

Table 3.1: A summary of previous and current work for computing an approximate centerpoint for n points
in Rd. The notation Ow hides polylogarithmic dependencies on the number of bits needed to encode the
input.

the point (i.e., a collection of αn simplices which contain the α-centerpoint). This proof can be easily used to

verify that the returned point is indeed an α-centerpoint. In particular, the result of Clarkson et al. [49] only

returns the approximate centerpoint and no such proof.

3.1.2 Random sampling vs. approximate centerpoint quality

Many randomized algorithms for computing centerpoints perform a random sampling step to obtain a

sample S ⊆ P and return an approximate centerpoint for S [49, 109, 149]. For example, it is not hard to argue

that if S ⊆ P is an ε-sample for halfspaces (see Section 4.2 for relevant definitions), then an α-centerpoint

for S is an (α− ε)-centerpoint for P [49, 109]. Perhaps unsurprisingly, this easy observation implies that

as the size of the random sample increases, the quality of the approximate centerpoint improves. Our

proposed algorithm does perform a random sampling step, however we use relative approximations instead

of ε-samples (see Lemma 3.10).

3.1.3 Our results

Let P be a set of n points in Rd. In addition to the improved algorithm for computing approximate

centerpoints, we also suggest an application (additional applications which will be covered in Chapter 4):

(A) Approximating centerpoints. We revisit the algorithm of Clarkson et al. [49] for approximating a

centerpoint. We present an improved algorithm, which is a variant of their algorithm which runs in
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Õ(d7) time, and computes roughly a 1/(d + 2)2-centerpoint. This improves both the running time,

and the quality of centerpoint computed. While the improvements are small (a factor of d2 roughly in

the running time, and a factor of four in the centerpoint quality), we believe that the new algorithm

is simpler. The analysis is cleaner, and is of independent interest. In particular, the analysis uses a

random walk argument, which is quite uncommon in computational geometry, and (we believe) is of

independent interest. See Theorem 3.2.

An animation of the approximate centerpoint algorithm is available on YouTube [83] (see the YouTube

channel for animations of the algorithm with different point sets).

(B) Lower-bounding convex functions. Given a convex function f in Rd, such that one can compute its

value and gradient at a point efficiently, we present an algorithm that computes quickly a realizable

lower-bound on the value of f over P. Formally, the algorithm computes a point q ∈ Rd, such that

f (q) ≤ minp∈P f (p). The algorithm is somewhat similar in spirit to the ellipsoid algorithm. The

running time of the algorithm is Õ
(
d9). See Theorem 3.3.

3.2 APPROXIMATING THE CENTERPOINT VIA RADON’S URN

Definition 3.1 (Centerpoint). Given a set P of n points in Rd, and a constant α ∈ (0, 1/(d + 1)], a point c ∈ Rd

is an α-centerpoint if for any closed halfspace that contains c, the halfspace also contains at least αn points of

P.

It is a classical consequence of Helly’s theorem that a 1/(d + 1)-centerpoint always exists [133]. If a point

c ∈ Rd is a 1/(d + 1)-centerpoint for P, we omit the 1/(d + 1) and simply say that c is a centerpoint for P.

We revisit the algorithm of Clarkson et al. [49] for approximating a centerpoint. We give a simpler

variant of their algorithm, and present a different (and we believe cleaner) analysis of the algorithm. In the

process we improve the running time from being roughly Õ
(
d9) to Õ

(
d7), and also improve the quality of

centerpoint computed.

Before describing the algorithm, we need the concept of Radon points. The following result is well-known

[78, 112]; we state the proof for completeness.

Lemma 3.1 (Radon’s Theorem). Given a set R = {q1, . . . , qd+2} of d + 2 points in Rd, one can partition R into

two non-empty sets R1, R2, such that conv(R1) ∩ conv(R2) 6= ∅.

Proof: Consider the set P = {(qi, 1) | qi ∈ R} ⊂ Rd+1. Since |P| = d + 2, the points P are linearly dependent.

As such, there are coefficients α1, . . . , αd+2, not all of them zero, such that ∑d+2
i=1 αiqi = 0 and ∑d+2

i=1 αi = 0. Let

I+ = {i | αi ≥ 0} and I− = {i | αi < 0}. By definition of I+ and I−, observe that ∑i∈I+ αiqi = −∑i∈I− αiqi

and define µ = ∑i∈I+ αi = −∑i∈I− αi. Thus, by choosing R1 = {qi | i ∈ I+} and R2 = R \ R1, we have that

the point p = ∑qi∈R1
(αi/µ)qi is a convex combination of the points in R1. Similarly, p = −∑qi∈R2

(αi/µ)qi ∈
conv(R2). Hence, p ∈ conv(R1) ∩ conv(R2). QED.
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Definition 3.2. Let R ⊆ Rd be a set of n ≥ d + 2 points and let R1, R2 be non-empty sets which partition R

such that conv(R1) ∩ conv(R2) 6= ∅. Any point p ∈ conv(R1) ∩ conv(R2) is called a Radon point.

Our algorithm will need the following facts about Radon points.

Lemma 3.2. Let R be a set of d + 2 points in Rd:

(A) A Radon point for R can be computed in O(d3) time.

(B) Any Radon point for R is a 2/(d + 2)-centerpoint for R.

(C) Let p be any Radon point for R. For any halfspace h+, if h+ contains at most one point of R, then h+ does not

contain p.

Proof: (A) The proof of Lemma 3.1 implies that a Radon point p can be extracted from the coefficients

α1, . . . , αd+2. These coefficients can be found by solving the described homogeneous linear system

consisting of d+ 1 equations in d+ 2 variables. Such a system can be solved in time O(d3) via Gaussian

elimination.

(B) Let h+ be any halfspace containing a Radon point p of R. Since p ∈ conv(R1) ∩ conv(R2), convexity

implies that h+ must also contain at least one vertex of conv(R1) and conv(R2). Thus, |h+ ∩ R| ≥ 2 =

2
d+2 |R|.

(C) This statement is the contrapositive of (B). QED.

3.2.1 The algorithm

Let P be a set of n points in Rd for which we would like to approximate its centerpoint. To this end,

let Q be initially P. In each iteration the algorithm randomly picks d + 2 points (with repetition) from Q,

computes their Radon point using Lemma 3.2 (A), randomly deletes any point of Q, and inserts the new

Radon point into the point set Q. See Figure 3.1. This process is repeated for sufficiently many iterations (to

be determined). At the end of this process, the algorithm returns an arbitrary point in Q as the approximate

centerpoint.

Remark 3.1. The algorithm above is a variant of the algorithm of Clarkson et al. [49]. Their algorithm worked

in rounds, in each round generating n new Radon points, and then replacing the point set with this new set,

repeating this a sufficient number of times. Our algorithm on the other hand is a “continuous” process.

3.2.2 Intuition for the analysis

By Lemma 3.2 (B), a Radon point is a decent center for the points defining it. Visually, the above algorithm

causes the points to slowly migrate towards the center region of the original point set.

The analysis of the algorithm will proceed as follows. Suppose the goal is to compute an f (d)-centerpoint

of P. To this end, consider a halfspace h+ that contains at most f (d)n points of P. Recall that at the end of the
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n: 0 n: 4000 n: 8000 n: 16000 

Figure 3.1: A point set consisting of points lying on three large circles and three small circles, and running
the algorithm after 4000, 8000, and 16000 iterations. Several animations of the algorithm are available on
YouTube [83].

Figure 3.2: A halfspace h+ containing f (d)n points of P. Color points inside h+ (the shaded region) as red
and points outside h+ blue. Choosing at most one red point guarantees the Radon point (green) is outside
h+.

algorithm, we return an arbitrary point in Q as the approximate centerpoint. In particular, we want to argue

that after sufficiently many iterations, Rd \ h+ contains all points of Q. If we apply this argument in parallel

over all such halfspaces h+, then every point in Q at termination of the algorithm will be an f (d)-centerpoint

of P. As such, the remainder of the analysis will focus on a fixed halfspace h+.

At each iteration of the algorithm, we color the points of Q either red or blue. A point is colored blue if

and only if it lies outside the halfspace h+. Observe that the algorithm makes progress for h+ when the

computed Radon point falls outside h+ and the randomly chosen point to delete was colored red (i.e., a

point inside h+). Now, the Radon point might be in h+ only if we picked two (or more) red points in Q,

by Lemma 3.2 (C). As such, we can guarantee that progress is made when at most one of the d + 2 points

chosen at random is red, and the point deleted from Q was red. See Figure 3.2.

Roughly speaking, the problem is to upper bound the number of iterations needed until all points are

colored blue. We now formally state and analyze this problem in a generalized setting.

3.2.3 Radon’s urn

In the Radon’s urn game there are r red balls, and b = n− r blue balls in an urn, and there is a parameter t.

An iteration of the game goes as follows:
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(A) The player picks a random ball, marks it for deletion, and returns it to the urn.

(B) The player picks a sample S of t balls (with replacement—which implies that we might have several

copies of the same ball in the sample) from the urn.

(C) If at least two of the balls in the sample S are red, the player inserts a new red ball into the urn.

Otherwise, the player inserts a new blue ball.

(D) The player returns the sample to the urn.

(E) Finally, the player removes the ball marked for deletion from the urn.

Note that in each stage of the game, the number of balls in the urn remains the same. We are interested in

how many rounds of the game one has to play till there are no red balls in the urn with high probability.

Here, the initial value of r is going to be relatively small compared to n.

Importantly, the setup described matches the setting discussed in Section 3.2.2, with t = d + 2 and initially

r = f (d)n.

3.2.4 Analysis

Let P(r) be the probability of picking two or more red balls into the sample, assuming that there are r red

balls in the urn. We have that

P(r) =
t

∑
i=2

(
t
i

)( r
n

)i(
1− r

n

)t−i
≤
(

t
2

)( r
n

)2
≤ t2

2

( r
n

)2
.

(For the proof of the first inequality, see [80].) Note, that P(r) ≤ 1/2 if n ≥ tr. Let P+(r) be the probability

that the number of red balls increased in this iteration. For this to happen, at least two red balls had to be

in the sample, and the deleted ball must be blue. Let P−(r) be the probability that the number of red balls

decreases—the player needs to pick strictly less than two red balls in the sample, and delete a red ball. This

implies

P+(r) = P(r)(1− r/n) ≤ P(r) and P−(r) = (1− P(r))(r/n).

The probability for a change in the number of red balls at this iteration is

P±(r) = P+(r) + P−(r) = P(r)(1− r/n) + (1− P(r))(r/n) = (1− 2r/n)P(r) + r/n.

Lemma 3.3. Let ξ ∈ (0, 1/4) be a parameter. If r ≤ R, then

P+(r) ≤
1/2− ξ

1/2 + ξ
P−(r), where R = (1− 2ξ)

n
t2 .
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Proof: We solve P(r) ≤ 1−2ξ
1+2ξ P−(r) ≤ (1− 2ξ)P−(r), which is equivalent to

P(r) ≤
(
1− P(r)

) r
n
(1− 2ξ) ⇐⇒ n

(1− 2ξ)r
P(r) ≤ 1− P(r) ⇐⇒ P(r) ≤ (1− 2ξ)r

(1− 2ξ)r + n
.

Now the last inequality holds if t2r2

2n2 ≤ (1−2ξ)r
2n since

P(r) ≤ t2r2

2n2 ≤
(1− 2ξ)r

2n
≤ (1− 2ξ)r

(1− 2ξ)r + n
.

Namely, the desired condition holds when r ≤ (1− 2ξ)n/t2. QED.

We conclude this section by making some remarks regarding the specific problem we need to solve and

the roles of the parameters introduced above.

The question Let ϑ ∈ (0, 1) and r0 = (1− ϑ)R be the number of red balls in the urn at the start of the

game (note that both r0 and R are functions of n and t). Let ϕ > 0 be a parameter. The key question is the

following: How large does n need to be so that if we start with r0 red balls (and n− r0 blue balls), the game

ends with all balls being blue with probability ≥ 1− ϕ?

The game as a random walk An iteration of the game where the number of red balls changes is an effective

iteration. Considering only the effective iterations, this can be interpreted as a random walk starting at

X0 = (1− ϑ)R and at every iteration either decreasing the value by one with probability at least 1/2 + ξ,

and increasing the value with probability at most 1/2− ξ, by Lemma 3.3. This walk ends when either it

reaches 0 or R. If the walks reaches R, then we consider the process to have failed (see the next remark).

Otherwise if the walk reaches 0, then there are no red balls in the urn as desired, and the process succeeds.

The ratio R/n The value R/n is an upper bound on the ratio of red balls that the urn can have and still,

with good probability, end with zero red balls at the end of the game. If this ratio is violated anytime

during the game, then the urn might end up consisting of only red balls. We want to start the game with

an urn initially having close to R red balls, but still end up with an entirely blue urn with sufficiently high

probability.

The parameter ξ The parameter ξ controls the bias in the random walk. As ξ goes to zero, the random

walk becomes less unbalanced as it moves left with probability 1/2 + ξ and move right with probability

1/2− ξ. Naturally, if the walk has a near-equal chance to move left or right, then we show that the number

of iterations until success will depend polynomially on 1/ξ. In the context of our main application to

centerpoints, this parameter is key to obtaining centerpoints with approximation quality arbitrarily close to

1/(d + 2)2.
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3.2.5 Analyzing the related walk

Consider the random walk that starts at Y0 = (1− ϑ)R. At the ith iteration, Yi = Yi−1 − 1 with probability

1/2 + ξ, and Yi = Yi−1 + 1 with probability 1/2− ξ. Let Y = Y1, Y2, . . . be the resulting random walk which

can be shown to stochastically dominate the walk X0, X1, . . .. Formally, we mean that for any integer k and

each i, Pr[Xi > k] ≤ Pr[Yi > k]. This fact can be proved using the coupling technique, see [56, Section 7.4].

Hence, it suffices to analyze the behavior of Y .

For large values of ξ, the walk is strongly biased towards going to 0, and as such it does not hang around

too long before moving on, as testified by the following Lemma.

Lemma 3.4. Let I be any integer number, and let ϕ > 0 be a parameter. The number of times the random walk Y
visits I is at most

1
4ξ2 ln

1
4ξ2 ϕ

times, and this holds with probability ≥ 1− ϕ.

Proof: Let τ be the first index such that Yτ = I. The probability that Yτ+2i = I is

pτ+i =

(
2i
i

)(
1
2
− ξ

)i(1
2
+ ξ

)i
≤ 22i

(
1
4
− ξ2

)i
=
(

1− 4ξ2
)i

.

The probability that the walk would visit I again after time τ + u is bounded by ν(u) = ∑∞
i=u pτ+i ≤

pτ+u/
(
4ξ2). We want to choose u so that ν(u) ≤ ϕ. In particular,

ν(u) ≤ (1− 4ξ2)u/(4ξ2) ≤ exp
(
−4ξ2u

)
/(4ξ2) ≤ ϕ

for u ≥ 1
4ξ2 ln 1

4ξ2 ϕ
. Thus the walk might visit I during the first u iterations, but with probability ≥ 1− ϕ

it never visits it again. We conclude, that with probability ≥ 1− ϕ, the walk visits the value I at most u

times. QED.

We next bound the probability that the walk fails.

Lemma 3.5. Let ϕ > 0 be a parameter. If R ≥ 1
2ξϑ

ln
1

4ξ2 ϕ
then the probability that the random walk Y ever visits

R (and thus fails) is bounded by ϕ.

Proof: Since the walk starts at (1− ϑ)R, the first time it can arrive to R is at time ϑR. In particular, the

probability that YϑR+2i = R is

p′i =
(

ϑR + 2i
ϑR + i

)(
1
2
− ξ

)ϑR+i(1
2
+ ξ

)i
≤ 2ϑR+2i

(
1
2
− ξ

)ϑR+i(1
2
+ ξ

)i

= (1− 2ξ)ϑR+i(1 + 2ξ)i = (1− 2ξ)ϑR
(

1− 4ξ2
)i

.

It follows that the probability of failure is bounded by

p =
∞

∑
i=0

p′i ≤ (1− 2ξ)ϑR/
(

4ξ2
)
≤ exp(−2ξϑR)/(4ξ2).
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In particular, we require that p ≤ exp(−2ξϑR)/
(
4ξ2) ≤ ϕ, which holds for R ≥ 1

2ξϑ
ln

1
4ξ2 ϕ

. QED.

3.2.6 Back to the urn

The next Lemma we prove will require the existence of concentration bounds for sums of geometric

variables. Such concentration bounds can be derived from Chernoff-type inequalities [93].

Lemma 3.6 ([93, Theorem 2.3]). Let X1, . . . , Xm be m independent random variables with geometric distribution

with parameter 1/2. For any λ ≥ 1, we have Pr[∑m
i=1 Xi ≥ λ · 2m] ≤ λ−12−2m(λ−1−ln λ). For λ = 4, this becomes

Pr[∑m
i=1 Xi ≥ 8m] ≤ 2−2m(4−1−ln 4)/4 ≤ 2−3m ≤ e−3m/2, for m ≥ 10.

The number of red balls in the urn is stochastically dominated by the random walk above. The challenge

is that the number of iterations one has to play before an effective iteration happens (which corresponds

to one step of the above walk) depends on the number of red balls, and behaves like the coupon collector

problem. Specifically, if there are r ≤ R red balls in the urn, then the probability for an effective step is

P±(r) ≥ (1− P(r))(r/n) ≥ r/2n, as P(r) ≤ 1/2.1 This implies that in expectation, one has to wait at most

2n/r iterations before an effective iteration happens.

Lemma 3.7. Let ϕ > 0 and ξ ∈ (0, 1/4) be parameters. For any value r ≤ R, the urn spends at most s(r) =

O
(
(n/r)ξ−2 ln(ξ−1 ϕ−1)

)
regular iterations, throughout the game, having exactly r balls in it, with probability

≥ 1− ϕ.

Proof: Consider an iteration in which the urn has r red balls. Let ∆ be the random variable who value is

equal to the number of iterations played until the amount of red balls change. By the above discussion, we

have that E[∆] ≤ 2n/r. In particular, Markov’s inequality implies that Pr[∆ ≥ 4n/r] ≤ E[∆]/(4n/r) ≤ 1/2.

Call a collection of 4n/r consecutive iterations having exactly r red balls a block and define X =

d∆/(4n/r)e to be the random variable which is equal to the number of blocks until there is a change

in the number of red balls. A block is a success if one of its iterations changes the amount of red balls.

Otherwise the block is a failure. As the chance of success is at least 1/2 for each block, and X measures the

number of trials until success, X forms a geometric distribution with parameter 1/2.

Lemma 3.4 implies that the number of effective iterations with r red balls is at most m = ln(1/(4ξ2 ϕ))/4ξ2.

For each of the m visits, we define an associated random variable Xi with the same geometric distribution

described above. One can verify that µ = E[∑i Xi] ≤ 2m. We now prove that ∑i Xi is not much larger than µ

with good probability. Indeed, applying Lemma 3.6 directly implies that

Pr

[
m

∑
i=1

Xi ≥ 8m

]
≤ exp(−3m/2) = exp

(
3/(8ξ2) ln(4ξ2 ϕ)

)
= (4ξ2 ϕ)3/(8ξ2) ≤ ϕ,

1Recall that P(r) ≤ 1/2 when r ≤ n/t. The latter inequality always holds during the random process, since r ≤ R = (1− 2ξ)n/t2 ≤
n/t, by Lemma 3.3.
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where the last inequality follows since ξ < 1/4.

We conclude that the number of iterations the urn spends having exactly r balls in it is bounded by

(2n/r)∑i Xi = O((n/r)ξ−2 ln(ξ−1 ϕ−1)) with probability at least 1− ϕ. QED.

Lemma 3.8. Let ϕ > 0 and ϑ ∈ (0, 1) be parameters, and assume that n = Ω
(

t2

ξϑ
ln

1
ξϕ

)
. The total number of

regular iterations one has to play till the urn contains only blue balls, is O
(
nξ−2 log n log(nξ−1 ϕ−1)

)
, and this

bound holds with probability ≥ 1− ϕ.

Proof: The bound on the number of steps follows readily by summing up the bound of Lemma 3.7, for

r = 1, . . . , R. Specifically, we apply this Lemma with failure probability ϕ/2n, to bound the sum ∑R
r=1 s(r) =

O
(
nξ−2 log n log(nξ−1 ϕ−1)

)
. The probability of failure is at most Rϕ/2n ≤ ϕ/2.

The other reason for a failure is that the urn reaches a state where it has R red balls. In particular, using

Lemma 3.5 to bound this probability by ϕ/2, requires that R ≥ 1
2ξϑ

ln
1

2ξ2 ϕ
. By the value specified in

Lemma 3.3, this requires (1− 2ξ) n
t2 ≥ 1

2ξϑ ln 1
2ξ2 ϕ

, which holds for the value of n stated. QED.

3.2.7 Back to approximating the centerpoint

Equipped with Lemma 3.8, we now return our focus to computing an f (d)-centerpoint for a given point

set P. We will apply Lemma 3.8 to each halfspace h+ that contains exactly f (d)n points of P. To apply the

Radon’s urn analysis above, we require that the number of initial red balls is f (d)n = (1− ϑ)R, where

ϑ ∈ (0, 1). By Lemma 3.3, R = (2/3)n/t2 (by choosing, say, ξ = 1/6). Recall that t = d + 2, which implies

that

(1− ϑ)
2n

3(d + 2)2 = f (d)n ⇐⇒ f (d) =
2(1− ϑ)

3(d + 2)2 ≥
1− ϑ

2(d + 2)2 (3.1)

We now apply the Radon’s urn analysis to argue that after a sufficient number of iterations, all of the points

of Q are outside h+.

Playing many Radon’s urn games in parallel Consider all halfspaces that might be of interest. To this end,

consider any hyperplane passing through d points of P, and translate it so that it contains on one of its sides

exactly f (d)n points (naturally, there are two such translations). Each such hyperplane thus defines two

natural halfspaces. Let H be the resulting set of halfspaces. Observe that |H| ≤ 2(n
d) ≤ 2(ne/d)d. If Q does

not contain any point in any of the halfspaces of H then all its points are f (d)-centerpoints. In particular,

one can think about this as playing |H| parallel Radon’s urn games. We want the algorithm to succeed with

probability≥ 1− ϕ. Setting the probability of failure for each halfplane of H to be ϕ/ |H|, and by Lemma 3.8,

we have that all of these halfspaces are empty after playing

O
(

n log n log(n|H|ϕ−1)
)
= O

(
dn log n log(n/ϕ)

)
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iterations, with probability of success being 1− |H| (ϕ/ |H|) = 1− ϕ by the union bound. Using Lemma 3.8

requires that n = Ω
(
t2ϑ−1 ln(|H|/ϕ)

)
= Ω

(
ϑ−1d3 ln n + ϑ−1d2 ln ϕ−1) which holds for n = Ω(ϑ−1d3 ln d +

ϑ−1d2 ln ϕ−1).

By Lemma 3.2 (A), computing a Radon point for d + 2 points in Rd can be done in O(d3) time, and hence

we obtain the following result. A proof of the Lemma involving the parameter ξ is located in [80].

Lemma 3.9 ([80]). Let ϕ > 0 and ϑ ∈ (0, 1) be parameters, and let P be a set of n = Ω(ϑ−1d3 ln d + ϑ−1d2 ln ϕ−1)

points in Rd. Let α = 1−ϑ
2(d+2)2 . Then, one can compute a α-centerpoint of P via a randomized algorithm. The running

time of the randomized algorithm is O
(
d3 · dn log n log(n/ϕ)

)
= O(d4n log n log(n/ϕ)), and it succeeds with

probability ≥ 1− ϕ.

Removing the dependency on n We now remove the dependency on n in the running time of Lemma 3.9 by

performing a random sampling step beforehand via the use of relative approximations. See Section 4.2.1p43

for the relevant definitions, specifically Definition 4.4p43 and Theorem 4.3p44. To start, we need the following

observation.

Lemma 3.10. Let P be a set of n points in Rd. Suppose that S ⊆ P is a relative (p, ε̂)-approximation for halfspaces.

Let c ∈ Rd be an α-centerpoint for S. If α ≥ p, then c is a (1− ε̂)p-centerpoint for P.

Proof: Let h+ be any halfspace containing c. As c is an α-centerpoint for S and S is a relative (p, ε̂)-

approximation for P, we have that

m
(
h+
)
≥ s
(
h+
)
− ε̂p ≥ α− ε̂p ≥ (1− ε̂)p.

As such, c is a (1− ε̂)p-centerpoint for P. QED.

Theorem 3.1. Given a set P of n points in Rd, a parameter ϕ, and a constant ϑ ∈ (0, 1), one can compute a 1−ϑ
2(d+2)2 -

centerpoint of P. The running time of the algorithm is O
(

ϑ−3d7 log3 d log3 ϕ−1
)

together with a random sampling

step, and it succeeds with probability ≥ 1− ϕ.

Proof: The idea is to pick a random sample S from P that is a relative (ρ, ϑ/8)-approximation for halfspaces,

where ρ = 1/(10d2). This range space has VC dimension d + 1, and by Theorem 4.3, a sample of size

µ = O
(
ρ−1ϑ−2(d log ρ−1 + log ϕ−1)

)
= O

(
d2ϑ−2(d log d + log ϕ−1)

)
is a relative (ρ, ϑ/8)-approximation.

Running the algorithm of Lemma 3.9 on S with ϑ/8 yields a τ-centerpoint c of S, where τ = 1−ϑ/8
2(d+2)2

. Note

that τ ≥ ρ for d ≥ 2, and so Lemma 3.10 implies that c is an α-centerpoint for P, where

α = (1− ϑ/8)τ =
(1− ϑ/8)2

2(d + 2)2 ≥
1− ϑ

2(d + 2)2 .
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By Lemma 3.9, the running time of the resulting algorithm is

O(d4µ log µ log(µ/ϕ)) = O
(
ϑ−2d7 log2 ϑ−1 log3 d log3 ϕ−1) = O

(
ϑ−3d7 log3 d log3 ϕ−1). QED.

Repeating the above calculations with the parameter ξ allows us to compute centerpoints of quality

arbitrarily close to 1/(d + 2)2. In order to preserve that the random walk succeeds with probability at least

1− ϕ, the sample size n must depend on the parameter ξ.

Theorem 3.2 ([80]). Given a set P of n points in Rd, a parameter ϕ, and a constant γ ∈ (0, 1), one can compute a
1−γ

(d+2)2 -centerpoint of P. The running time of the algorithm is

O
(

γ−4d7 log3d log3
(

γ−1 ϕ−1
))

,

together with a random sampling step, and it succeeds with probability ≥ 1− ϕ.

Remark 3.2. The above compares favorably to the result of [49, Corollary 3]—they get a running time of

O(d9 log d+ d8 log2 ϕ−1), which is slower by roughly a factor of d2, and computes a 1
4.08(d+2)(d+1) -centerpoint

of P—the quality of the centerpoint is roughly worse by a factor of four.

3.3 APPLICATION: LOWER-BOUNDING A CONVEX FUNCTION

In this section we discuss a straightforward application of the improved centerpoint algorithm. This

particular application (and future applications) revolve around the idea of oracle access. Suppose we are

interested in lower bounding a convex function given an oracle to compute it’s gradient.

Definition 3.3. Let f : Rd → R be a convex function. For a number c ∈ R, define the level set of f as

L f (c) =
{

p ∈ Rd | f (p) ≤ c
}

. If f is a convex function, then L f (c) is a convex set for all c ∈ R.

Definition 3.4. Let f : Rd → R be a convex (and possibly non-differentiable) function. For a point p ∈ Rd, a

vector v ∈ Rd is a subgradient of f at p if for all q ∈ Rd, f (q) ≥ f (p) + 〈v, q− p〉. The subdifferential of f at

p ∈ Rd, denoted by ∂ f (p), is the set of all subgradients v ∈ Rd of f at p.

It is well known that when the domain of f is Rd and f is a convex function, then ∂ f (p) is a non-empty

set of all p ∈ Rd (for example, see [65, Chapter 3]).

Theorem 3.3. Let f : Rd → R be a convex (possibly non-differentiable) function and P a set of n points in Rd.

Assume that one has access to an oracle which given p ∈ Rd returns an arbitrary element in the subdifferential

∂ f (p). With O(d2 log n) queries to the oracle, one can compute a point q ∈ Rd (not necessarily in P) such that

f (q) ≤ minp∈P f (p).
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Proof: Let P1 = P, and Pi ⊆ P denote the set of remaining points at the beginning of the ith iteration. In itera-

tion i, for some constant c > 0, compute a (c/d2)-centerpoint ci of Pi using Theorem 3.1 in time O(d7 log3 d)

with success probability 1/2. Define Ci = L f ( f (ci)). We now use the oracle to obtain subgradient vector

v ∈ ∂ f (ci). Given v, let hi be the d-dimensional hyperplane orthogonal to v which passes through ci. By

construction, hi is tangent to Ci at ci. Let h+i be the halfspace formed from hi which contains the interior of Ci.

If |h−i ∩ Pi| ≥ c |Pi| /d2, then such an iteration is successful and we set Pi+1 = Pi \ (h−i ∩ Pi) and continue to

iteration i + 1. Otherwise the iteration has failed and we repeat the ith iteration. This procedure is repeated

until we reach an iteration τ in which |Pτ | is of constant size. At this stage, the algorithm returns the point

achieving the minimum of min1≤i≤τ f (ci) and minp∈Pτ f (p). Because f is convex, the algorithm returns a

point q such that f (q) ≤ f (p) for all p ∈ P.

As for the number of queries, note that in each iteration the expected number of centerpoint calculations

(and thus queries) until a successful iteration is O(1). It remains to bound the number of successful

iterations. In each successful iteration, a c/d2-fraction of points are discarded. Therefore there are at most τ

iterations, for which τ is the smallest number with (1− c/d2)τn smaller than some constant. This implies

τ = O(d2 log n). QED.
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4 Functional nets, center nets, and other variants

“
Reductio ad absurdum, which Euclid loved so much, is one of a mathematician’s finest

weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of

a pawn or even a piece, but a mathematician offers the game.

— Godfrey H. Hardy

(A Mathematician’s Apology)

In this chapter we explore many different types of nets, including nets for more complex ranges, such as

arbitrary convex bodies. In particular, we use the improved centerpoint algorithms derived in Chapter 3

to efficiently construct these nets, and explore the connection between centerpoints and weak ε-nets. We

assume the reader is already familiar with the concept of range spaces, VC dimension, and related results. A

brief summary is provided in Section 4.2.

4.1 BACKGROUND

Range spaces and ε-nets A range space is a pair S = (U ,R), where U is the ground set (finite or infinite)

andR is a (finite or infinite) family of subsets of U . The elements ofR are ranges.

Suppose that U is a finite set. For a parameter ε ∈ (0, 1), a subset S ⊆ U is an ε-net for the range space S,

if for every range r ∈ R with |r ∩ U| ≥ ε|U | has r ∩ S 6= ∅. The ε-net theorem of Haussler and Welzl [88]

implies the existence of ε-nets of size O(δε−1 log ε−1), where δ is the VC dimension of the range space S. The

use of ε-nets is widespread in computational geometry [78, 112]. We formalize these definitions and make

them concrete in Section 4.2.

Weak ε-nets Consider the range space (P, C), where C is the collection of all compact convex bodies in

Rd and P ⊂ Rd is a point set of size n. This range space has infinite VC dimension—the standard ε-net

constructions do not work for this range space. The notion of weak ε-nets bypasses this issue by allowing

the net S to use points outside of P. Specifically, any convex body C that contains at least εn points of P

must contain a point of S. The first construction of weak ε-nets in the plane was due to Bárány et al. [16],

where they construct nets of size O(1/ε1026). For all d ≥ 1, Alon et al. [6] were the first to construct weak

40



ε-nets in Rd whose size was bounded in terms of 1/ε and d. In 2004, Matoušek and Wagner [114] gave a

simpler construction of weak ε-nets of size Od(ε
−d log f (d) ε−1), where f (d) = O(d2 log d). Recently, Rubin

[137, 138] gave an improved bound, showing existence of weak ε-nets of size Od(ε
−(d−0.5+α)) for arbitrarily

small α > 0. For more detailed history of the problem, see the introduction of Rubin [137, 138]. As for a

lower bound, Bukh et al. [28] gave constructions of point sets for which any weak ε-net must have size

Ωd(ε
−1 logd−1 ε−1). Closing this gap remains a major open problem. See [126] for a recent survey of ε-nets

and related concepts. See also the recent work by Rok and Smorodinsky [135] and references therein.

Basis of weak ε-nets Mustafa and Ray [125] showed that one can pick a random sample S of size

cdε−1 log ε−1 from P, and then compute a weak ε-net for P directly from S, showing that the size of the

support needed to compute a weak ε-net is (roughly) the size of a regular ε-net. Unfortunately, the constant

in their sample cd = O
(
dd(log d)cd3 log d) is doubly exponential in the dimension. This constant cd is related

to the ((d + 1)2, d + 1)-Hadwiger-Debrunner number (the best known upper bounds on (p, q)-Hadwiger-

Debrunner numbers can be found in [98, 99]).

In particular, all current results about weak ε-nets suffer from the “curse of dimensionality” and have

constants that are at least doubly exponential in the dimension.

(k, ε)-nets and uniform measure A natural extension of weak ε-nets is to allow the net S to contain other

geometric objects. Given a collection of n points P ⊂ Rd and a parameter 0 ≤ k < d, we define a (weak)

(k, ε)-net to be a collection of k-flats S such that if C is a convex body containing at least εn points of P, then

there exists a k-flat in S intersecting C. Note that (0, ε)-nets are exactly weak ε-nets.

In general, one would expect that as k increases, the size of the (k, ε)-net shrinks. For example, a (1, ε)-net

for a collection of points in R3 can be constructed by projecting the points down onto the xy-plane and

applying Rubin’s construction in the plane to obtain a weak ε-net S of size O(ε−(3/2+α)) [137]. Lifting S up

back into three dimensions results in a (1, ε)-net of the same size, which is smaller than the best known weak

ε-net size in R3 [114, 137, 138]. However, one might expect that a (1, ε)-net of even smaller size is possible in

R3, as this construction uses a set of parallel lines (i.e., one would expect the lines in an optimal net to be

arbitrarily oriented).

As part of this chapter, we study an even simpler version of the problem, where the ground set is the

hypercube B = [0, 1]d. In particular, for ε ∈ (0, 1) and 0 ≤ k < d, we are interested in computing the smallest

set K of k-flats, such that if C is a convex body with vol(C ∩ B) ≥ ε, then there is a k-flat in K which intersects

C. For sake of exposition, throughout the rest of the paper we refer to this set K as a (k, ε)-net for volume

measure. We note that [0, 1]d can be replaced with any arbitrary compact convex body in the definition (the

size of the (k, ε)-net increases by a factor depending on d).
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4.1.1 Our results

Let P be a set of n points in Rd. We suggest some alternatives to weak ε-nets, and obtain some related

results:

(A) Functional nets. Let C ⊆ Rd be a convex body. Suppose we are only given access to C via a separation

oracle: given a query point z, the oracle either returns that z is in C, or alternatively, the oracle returns

a hyperplane separating z and C. We show that a random sample of size

O
(

ε−1d3 log d log3 ε−1 + ε−1 log ϕ−1
)
= Õ

(
d3/ε

)
,

with probability≥ 1− ϕ, can be used to decide if a query convex body C contains less than an ε-fraction

of the points of P (in which case we say that C is ε-light). Formally, the algorithm, using only the

sample, performs O(d2 log ε−1) oracle queries—if any of the query points generated stabs C, then C is

considered as (potentially) containing more than εn points. Alternatively, if all the queries missed C,

then C contains less than εn points of P. The query points can be computed in polynomial time, and

we emphasize that the dependency in the running time and sample size are polynomial in ε and d.

See Theorem 4.4. Within the context of weak ε-nets, given that current constructions of weak ε-nets

have size of the form 1/εO(d), this result can be viewed as mitigating the curse of dimensionality—the

sample size avoids an exponential dependency on d.

(B) Center nets. Using the above, one can also construct a weak ε-net directly from such a sample—this

improves over the result of Mustafa and Ray [125] as far as the dependency on the dimension is

concerned, and is described in Lemma 4.7.

Surprisingly, by using ideas from Theorem 4.4 one can get a stronger form of a weak ε-net, which

we refer to as an (ε, α)-center net. Here α = Ω(1/(d log ε−1)) and one can compute a set W of size

(roughly) Õd
(
ε−O(d2)

)
, such that if a convex body C containing ≥ εn points of P, thenW contains a

point z which is an α-centerpoint (Definition 3.1p29) of C ∩ P. Namely, the net contains a point that

stabs C in the “middle” of the point set C ∩ P. See Theorem 4.5.

(C) Explicit constructions of (k, ε)-nets. In Lemma 4.10, we show that any (k, ε)-net for volume measure

must have size Ωd(1/ε1−k/d). Perhaps surprisingly, we give a relatively simple construction of (k, ε)-

nets for volume measure of size Od(1/ε1−k/d) for k ≥ 1 (Theorem 4.6). For k = 0, we obtain nets of size

Od((1/ε) logd−1(1/ε)) (Theorem 4.8). Importantly, both constructions are deterministic and explicit

(see the discussion below).

As far as the authors are aware, this particular problem we study has not been addressed before. The

only related result known is the existence of explicit constructions of (0, ε)-nets for volume measure

for axis parallel boxes in Rd, and is briefly mentioned in [28]. In this case, one can construct a

(0, ε)-net for volume measure of size Od(1/ε) using Van der Corput sets in two dimensions, and
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Halton-Hammersely sets in higher dimensions.

Deterministic vs. explicit constructions of ε-nets For the regular concept of ε-nets, there are known

deterministic constructions. They work by repeatedly halving the input point set, using deterministic

discrepancy constructions, until the set is of the desired size [41, 111]. On the one hand, for our setting

(i.e., the measure is uniform volume on the unit hypercube) it is not clear what the generated ε-net is

without running this construction algorithm outright. On the other hand, we develop a construction of weak

ε-nets—for uniform volume measure over the hypercube for ellipsoids—which are much simpler and are

explicit; one can easily compute the ith point in this net using polylogarithmic space.

4.2 PRELIMINARIES

4.2.1 Ranges spaces, VC dimension, samples and nets

The following is a quick survey of (standard) known results about ε-nets, ε-samples, and relative approxi-

mations [78].

Definition 4.1. A range space S is a pair (X̂,R), where X̂ is a ground set (finite or infinite) andR is a (finite or

infinite) family of subsets of X̂. The elements of X̂ are points and the elements ofR are ranges.

For technical reasons, it will be easier to consider a finite subset X ⊂ X̂ as the underlining ground set.

Definition 4.2. Let S = (X̂,R) be a range space, and let X be a finite (fixed) subset of X̂. For a range r ∈ R, its

measure is the quantity m(r) = |r ∩ X|/|X|. For a subset S ⊆ X, its estimate of m(r), for r ∈ R, is the quantity

s(r) = |r ∩ S|/|S|.

Definition 4.3. Let S = (X̂,R) be a range space. For Y ⊆ X̂, letR|Y =
{

r ∩Y | r ∈ R
}

denote the projection

of R on Y. The range space S projected to Y is S|Y =
(

Y,R|Y
)

. If R|Y contains all subsets of Y (i.e., if Y is

finite, we have
∣∣∣R|Y∣∣∣ = 2|Y|), then Y is shattered byR (or equivalently Y is shattered by S).

The VC dimension of S, denoted by dimVC(S), is the maximum cardinality of a shattered subset of X̂. If

there are arbitrarily large shattered subsets, then dimVC(S) = ∞.

Definition 4.4. Let S = (X̂,R) be a range space, and let X be a finite subset of X̂. For 0 ≤ ε ≤ 1, a subset

S ⊆ X is an ε-sample for X if for any range r ∈ R, we have |m(r)− s(r)| ≤ ε, see Definition 4.2. Similarly, a

set S ⊆ X is an ε-net for X if for any range r ∈ R, if m(r) ≥ ε (i.e., |r ∩ X| ≥ ε |X|), then r contains at least one

point of S (i.e., r ∩ S 6= ∅).

A generalization of both concepts is relative approximation. Let p, ε̂ > 0 be two fixed constants. A relative

(p, ε̂)-approximation is a subset S ⊆ X that satisfies (1− ε̂)m(r) ≤ s(r) ≤ (1 + ε̂)m(r), for any r ∈ R such

that m(r) ≥ p. If m(r) < p then the requirement is that |s(r)−m(r)| ≤ ε̂p.
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Theorem 4.1 (ε-net theorem, [88]). Let (X̂,R) be a range space of VC dimension ξ, let X be a finite subset of X̂,

and suppose that 0 < ε ≤ 1 and ϕ < 1. Let N be a set obtained by m random independent draws from X, where

m ≥ max
(

4
ε lg 4

ϕ , 8ξ
ε lg 16

ε

)
. Then N is an ε-net for X with probability at least 1− ϕ.

The following is a slight strengthening of the result of Vapnik and Chervonenkis [151]—see [78, Theorem

7.13].

Theorem 4.2 (ε-sample theorem). Let ϕ, ε > 0 be parameters and let
(
X̂,R

)
be a range space with VC dimension

ξ. Let X ⊂ X̂ be a finite subset. A sample of size O
(
ε−2(ξ + log ϕ−1)) from X is an ε-sample for S = (X,R) with

probability ≥ 1− ϕ.

Theorem 4.3 ([86, 105]). A sample S of size O
(
ε̂−2 p−1(ξ log p−1 + log ϕ−1)) from a range space with VC dimen-

sion ξ, is a relative (p, ε̂)-approximation with probability ≥ 1− ϕ.

The following is a standard statement on the VC dimension of a range space formed by mixing several

range spaces together (see [78]).

Lemma 4.1. Let S1 = (X̂1,R1), . . . , Sk = (X̂,Rk) be k range spaces, where all of them have the same VC dimension

ξ. Consider the new set of ranges R̂ = {r1 ∩ . . . ∩ rk | r1 ∈ R1, . . . , rk ∈ Rk}. Then the range space Ŝ = (X̂, R̂) has

VC dimension O(ξk log k).

4.2.2 Weak ε-nets

A convex body C ⊆ Rd is ε-heavy (or just heavy) if m(C) ≥ ε (i.e., |C ∩ P| ≥ ε |P|). Otherwise, C is ε-light.

Definition 4.5 (Weak ε-net). Let P be a set of n points in Rd. A finite set S ⊂ Rd is a weak ε-net for P if for

any convex set C with m(C) ≥ ε, we have S ∩ C 6= ∅.

Note, that like (regular) ε-nets, weak ε-nets have one-sided error—if C is heavy then the net must stab it,

but if C is light then the net may or may not stab it.

4.3 FUNCTIONAL NETS: A WEAK NET IN THE ORACLE MODEL

4.3.1 The model, construction, and query process

Model Given a convex body C ⊆ Rd, we assume oracle access to it. This is a standard model in optimiza-

tion. Specifically, given a query point z, the oracle either returns that z ∈ C, or alternatively it returns a

(separating) hyperplane h, such that C lies completely on one side of h, and z lies on the other side.

Our purpose here is to precompute a small subset S ⊆ P, such that given any convex body C (with oracle

access to it), one can decide if C is ε-light. Specifically, the query algorithm (using only S, and not the whole

point set P) generates an (adaptive) sequence of query points z1, z2, . . ., such that if any of these query points
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are in C, then the algorithm considers C to be heavy. Otherwise, if all the query points miss C, then the

algorithm outputs (correctly) that C is light (i.e., m(C) < ε).

Construction Given P, the set S is a random sample from P of size

µ = O
(

ε−1d3 log d log3 ε−1 + ε−1 log ϕ−1
)
= Õ

(
d3/ε

)
, (4.1)

where ϕ > 0 is a prespecified parameter.

Query process Given a convex body C (with oracle access to it), the algorithm starts with S0 = S. In the

ith iteration, the algorithm computes a Ω(1/d2)-centerpoint zi of Si using the algorithm of Theorem 3.1,

with failure probability at most 1/4. If the oracle returns that zi ∈ C, then the algorithm returns zi as a proof

of why C is considered to be heavy. Otherwise, the oracle returns a separating hyperplane hi, such that

the open halfspace h−i contains zi. Let S′i = Si−1 \ h−i . If
∣∣S′i∣∣ ≤ (1− γ) |Si−1|, where γ = 1/16d2 then we

set Si = S′i (such an iteration is called successful). Otherwise, we set Si = Si−1. The algorithm stops when

|Si| ≤ ε |S| /8.

4.3.2 Correctness

Let I be the set of indices of all the successful iterations, and consider the convex set CI = ∩i∈Ih+i .

The set CI is an outer approximation to C. In particular, for an index j, let Cj = ∩i∈I,i≤jh+i be this outer

approximation in the end of the jth iteration. We have that Sj = S ∩ Cj.

Lemma 4.2. There are at most τ = O(d2 log ε−1) successful iterations. For any j, the convex polyhedron Cj is

defined by the intersection of at most τ closed halfspaces.

Proof: We start with µ = |S0| points in S0. Every successful iteration reduces the number of points in

the net Sj−1 by a factor of γ. Furthermore, the algorithm stops as soon as
∣∣Sj
∣∣ ≤ ε |S0| /8. This implies

there are at most τ iterations, for the minimal τ such that (1− γ)τ ≤ ε/8, where γ = 1/(16d2). That is

τ = O(d2 log ε−1).

The second claim is immediate—every successful iteration adds one halfspace to the intersection that

forms CI . QED.

LetHτ be the set of all of convex polyhedra in Rd that are formed by the intersection of τ closed halfspaces.

Remark 4.1. The VC dimension of (Rd,Hτ) is

D = O(dτ log τ) = O
(

d
(

d2 log ε−1
)

log
(

d2 log ε−1
))

= O(d3(log d) log2 ε−1).
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This follows readily, as the VC dimension of the range space of points in Rd and halfspaces is d + 1, and by

the bound of Lemma 4.1 for the intersection of τ such ranges.

Lemma 4.3. The set S is a relative (ε/8, 1/4)-approximation for (P,Hτ), with probability 1− ϕ.

Proof: Using Theorem 4.3 with p = ε/8, ε̂ = 1/4, and ξ = D, implies that a random sample of P of size

O
(

ε̂−2 p−1(ξ log p−1 + log ϕ−1)
)
= O

(
ε−1(D log ε−1 + log ϕ−1)

)
= O

(
ε−1(d3 log d log3 ε−1 + log ϕ−1)

)
is the desired relative (p, ε̂)-approximation with probability ≥ 1− ϕ. And this is indeed the size of S, see

Eq. (4.1). QED.

Lemma 4.4. Given a convex query body C equipped with a separation oracle, the expected number of oracle queries

performed by the algorithm is O(d2 log ε−1) with expected running time O
(

d9ε−1 logO(1)(dε−1 ϕ−1)
)

.

Proof: If the computed point is in the ith iteration is indeed a centerpoint of Si−1, then the algorithm would

either stop in this iteration, or the iteration would be successful. Since the probability of the computed

point to be the desired centerpoint is at least ≥ 3/4, it follows that the algorithm makes (in expectation)

τ/(3/4) iterations till success. The ith iteration requires O(|Si|+ d7 log3 d) time, since we use the algorithm

of Theorem 3.1 to compute the approximate centerpoint. Summing this over all the iterations τ (bounded in

Lemma 4.2), we get expected running time

O(d2µ + τd7 log3 d) = O
(

d2
(

ε−1d3 log d log3 ε−1 + ε−1 log ϕ−1
)
+ d9 log3 d log ε−1

)
(4.2)

= O
(

d2ε−1 log ϕ−1 + d5ε−1 log d log3 ε−1 + d9 log3 d log ε−1
)

. QED.

Lemma 4.5. Assuming that S is the desired relative approximation, then for any query body C, if the algorithm

declares that it is ε-light, then |C ∩ P| < εn.

Proof: Let I be the set of successful iterations by the algorithm, and recall that CI is the outer approximation

of C and is the intersection of at most τ halfspaces. Now the algorithm stops in an iteration i when

|Si| ≤ (ε/8) |S|. Consequently, s(C) ≤ s(CI) = |Si| / |S| ≤ ε/8. There are two cases:

(i) If m(CI) < ε/8, then m(C) ≤ m(CI) < ε as claimed.

(ii) Otherwise m(CI) ≥ ε/8. But then, since S is a relative (ε/8, 1/4)-approximation for the points P and

rangesHτ and CI ∈ Hτ , we have that m(C) ≤ m(CI) ≤ 1
1−1/4 s(CI) ≤ (4/3)(ε/8) < ε.

In either case, the algorithm is correct. QED.

The above implies the following.
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Theorem 4.4. Let P be a set of points in Rd, and let ε, ϕ > 0 be parameters. Let S be a random sample of P of size

µ = O
(

ε−1d3 log d log3 ε−1 + ε−1 log ϕ−1
)
= Õ(ε−1d3).

Then, for a given query convex body C equipped with a separation access, the algorithm described above, which uses

only S, computes a sequence of query points q1, . . . , qm, such that either:

(i) one of the points qi ∈ C, and the algorithm outputs qi as a “proof” that C is ε-heavy, or

(ii) the algorithm outputs that |C ∩ P| < εn.

The query algorithm has the following performance guarantees:

(A) The expected number of oracle queries is E[m] = O(d2 log ε−1).

(B) The algorithm itself (ignoring the oracle queries) runs in Õ
(
d9ε−1) time (see Eq. (4.2) for exact bound).

The output of the algorithm is correct, for all convex bodies, with probability ≥ 1− ϕ.

Remark 4.2. One may hope to bound the probability of the algorithm reporting a false positive. However

this is inherently not possible for any weak ε-net construction. Indeed, the algorithm can fail to distinguish

between a polygon that contains at least εn of the points of P and a polygon that contains none of the points

of P. Consider n points P lying on a circle in R2. Choose εn of these points on the circle, and let C be the

convex hull of these points. Clearly C contains at least εn points of P. Now, take each vertex in C and “slice”

it off, forming a new polygon C′ that contains no points from P. However, C′ is still a large polygon and as

such may contain a centerpoint during the execution of the above algorithm. Therefore our algorithm may

report that C′ contains a large fraction of the points, even though C′ is contains no points of P, and so it fails

to distinguish between C and C′.

Remark 4.3. Clarkson et al. [49] provide also a randomized algorithm that finds a
( 1

d+1 − γ
)
-centerpoint

with probability 1− δ in time O
([

dγ−2 log(dγ−1)
]d+O(1) log δ−1). We could use this algorithm instead of

Theorem 3.1 in the query process. Since we are computing a better quality centerpoint, the number of

iterations τ and sample size µ would be smaller by a factor of d. Specifically, τ = O(d log ε−1) and from

Lemma 4.1, the VC dimension of the range space S = (P,Hτ) becomes D = O(d2 log d log2 ε−1). Following

the proof of Lemma 4.3, we can construct a sample S which is relative (ε/8, 1/4)-approximation for S with

probability 1− ϕ of size

µ = O
(

ε−1(D log ε−1 + log ϕ−1)
)
= O

(
ε−1(d2 log d log3 ε−1 + log ϕ−1)

)
. (4.3)

4.4 CONSTRUCTING CENTER NETS

We next introduce a strengthening of the concept of a weak ε-net. Namely, we require that there is a point

p in the net which stabs an ε-heavy convex body C, and that p is also a good centerpoint for C ∩ P.
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Definition 4.6. For a set P of n points in Rd, and parameters ε, α ∈ (0, 1), a subsetW ⊆ Rd is an (ε, α)-center

net if for any convex shape C, such that |P ∩ C| ≥ εn, we have that there is an α-centerpoint of P ∩ C inW .

In this section we prove existence of an (ε, α)-center netW of size roughly Od(ε
−d2

), where

α =
c1

(d + 1) log ε−1 ,

and c1 ∈ (0, 1) is some fixed constant to be specified shortly. Note that the quality of the centerpoint is worse

by a factor of log ε−1 than the best one can hope for.

4.4.1 The construction

The construction of the center net will be based on an algorithm for constructing a weak ε-net for P. In

particular, the construction algorithm will use the following two results.

Lemma 4.6 ([114]). Given a set P of n points in Rd, one can compute a set Q of O
(
nd2)

points, such that for any

subset P′ ⊆ P, there is a 1/(d + 1)-centerpoint of P′ in Q.

Proof: This is well known, and we include a proof for the sake of completeness.

Let H be the set of all hyperplanes which pass through d points of P. The original proof of the centerpoint

theorem implies that a vertex of the arrangement A(H) is a 1/(d + 1)-centerpoint of P. Let V(P) denote

the set of vertices of A(H). Observe that V(P′) ⊆ V(P), for all P′ ⊆ P, thus implying that V(P) contains all

desired centerpoints. As for the size bound, observe that

α = |H| ≤
(

n
d

)
≤
(ne

d

)d

and

|V(P)| ≤
(

α

d

)
≤
(

e
( ne

d
)d

d

)d

= nd2
( e

d

)d2+d
= O

(
nd2)

. QED.

Lemma 4.7. Let P be a set of n points in Rd. Let S be a random sample from P of size µ = Õ(ε−1d2), see Eq. (4.3)

for the exact bound. Then, one can compute a set of pointsW from S, of size

O(µd2
) = O

((
ε−1(d2 log d log3 ε−1 + log ϕ−1)

)d2)

which is a weak ε-net for P with probability ≥ 1− ϕ.

Proof: Imagine running the algorithm of Theorem 4.4 with the better quality centerpoint algorithm, as

sketched in Remark 4.3. This requires computing a sample S of size as specified in Eq. (4.3). Let Q be the
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universal set of centerpoints, as computed by Lemma 4.6, for the set S. We claim that Q is a weak ε-net.

Indeed, assuming the sample S is good, in the sense that the algorithm of Theorem 4.4 works (which happens

with probability ≥ 1− ϕ), then running this algorithm on any convex query body C (using S), generates a

sequence of points, such that one of them stabs C, if C is ε-heavy. However, the stabbing points computed by

the algorithm of Theorem 4.4 are centerpoints of some subset of S.

It follows that all the stabbing points that might be computed by the algorithm of Theorem 4.4, over

all possible ε-heavy query bodies C are contained in the set Q. Consequently, if C is ε-heavy, then C must

contain one of the points of Q. QED.

Remark 4.4. A similar construction of a weak ε-net, to the one in Lemma 4.7, from a small sample was

described by Mustafa and Ray [125]. Their sample has exponential dependency on the dimension, so the

resulting weak ε-net has somewhat worse dependency on the dimension than our construction. In any

case, these constructions are inferior as far as the dependency on ε, compared to the work of Matoušek and

Wagner [114] and Rubin [137, 138].

The idea will be to repeat the construction of the net of Lemma 4.7, with somewhat worse constants.

Specifically, take a sample S of size µ = Õ(ε−1d2) from P, see Eq. (4.3) for the exact bound. Next, we

construct the setW for S, using the result of Lemma 4.6. ReturnW as the desired (ε, α)-center net.

4.4.2 Correctness

The proof is algorithmic. Fix any convex ε-heavy body C, and let S1 = S be the active set and let

P1 = C ∩ P be the residual set in the beginning of the first iteration.

We now continue in a similar fashion to the algorithm of Theorem 4.4. In the ith iteration, the algorithm

computes the 1/(d + 1)-centerpoint zi of Si (running times do not matter here, so one can afford computing

the best possible centerpoint). If zi is a 2α-centerpoint for Pi, then zi is intuitively a good centerpoint for P,

and the algorithm returns zi as the desired center point. Observe that by construction, zi ∈ W as desired.

If not, then there exists a closed halfspace h+i containing zi and at most 2α |Pi| points of Pi. Let

Pi+1 = Pi \ h+i and Si+1 = Si \ h+i .

The algorithm now continues to the next iteration.

Analysis The key insight is that the active set Si shrinks much faster than the residual set Pi. However, by

construction, Si provides a good upper bound to the size of Pi. Now once the upper bound provided by Si

on the size of Pi is too small, this would imply that the algorithm must have stopped earlier, and found a

good centerpoint.
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Lemma 4.8. Let τ =
⌈
1 + 3(d + 1) + (d + 1) log ε−1⌉ , and α = 1/(4τ). Assuming that S is a relative (ε/8, 1/4)-

approximation for the range space S = (P,Hτ), the above algorithm stops after at most τ iterations.

Proof: As before, we can interpret the algorithm as constructing a convex polyhedra. Indeed, let Di+1 =⋃i
j=1 h−j , and observe that Pi+1 ⊆ P ∩ Di+1, and Si+1 = S ∩ Di+1.

For an iteration i < τ, we have

ni+1 = |Pi+1| ≥ (1− 2α) |Pi| ≥ (1− 2α)i |P1| ≥ (1− 2αi)n1 ≥ (1− 2ατ)n1 ≥ (ε/2)n,

using (1− x)i ≥ 1− ix, which holds for any positive x ∈ [0, 1].

On the other hand, the active set shrinks faster in each such iteration, since zi is a 1/(d + 1)-centerpoint of

Si. Setting si = |Si|, we have that

si+1 ≤
(

1− 1
d + 1

)
si ≤

(
1− 1

d + 1

)i
s1 ≤ exp

(
− i

d + 1

)
s1.

We have that sτ ≤ εs1/e3 ≤ (ε/20)s1. It follows that,

ε

2
≤ |Pτ |

n
≤ |P ∩ Dτ |

n
= m(Dτ) ≤ max

(
1

1− 1/4
s(Dτ),

ε

8
· 1

4
+ s(Dτ)

)
≤ 7

3
s(Dτ) +

ε

32
.

The penultimate inequality follows since S is a relative (ε/8, 1/4)-approximation to P for ranges like Dτ .

However we do not know which case applies (i.e., depending on whether or not m(Dτ) ≥ ε/8) and therefore

need to take the maximum over both cases. Finally,

ε

2
≤ 7

3
s(Dτ) +

ε

32
=

7
3
|Sτ |
|S| +

ε

32
≤ 7

3
(ε/20)s1

s1
+

ε

32
<

ε

5
,

which is impossible. We conclude the algorithm must have stopped at an earlier iteration. QED.

Lemma 4.9. The above algorithm outputs a α-centerpoint of P ∩ C.

Proof: Assume the algorithm stopped in the ith iteration. But then zi is a 2α-centerpoint of Pi. Since

ni ≥ nτ ≥ n1/2, it follows that any closed halfspace that contains zi, contains at least 2αni ≥ αn1 points of

Pi, and thus of P1. We conclude that zi is a α-centerpoint of P as desired. QED.

Arguing as in Remark 4.3 implies the following.

Corollary 4.1. For the above algorithm to succeed with probability ≥ 1− ϕ, the sample S needs to be a sample of the

size specified by Eq. (4.3).

Theorem 4.5. Let P be a set of n points in Rd, and ε > 0 be a parameter. For γ = log(1/ε), there exists a(
ε, Ω(1/(dγ))

)
-center net W (which is also a weak ε-net) of P (see Definition 4.6). The size of the net W is

O(µd2
) ≈ Od(ε

−d2
), where µ = Õ(ε−1d2), see Eq. (4.3) for the exact bound.
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Proof: The theorem follows readily from the above, by setting ϕ = 1/2. QED.

4.5 CONSTRUCTING NETS FROM LINES AND FLATS

Definition 4.7. The affine hull of a point set P = {p1, . . . , pn} ⊆ Rd is the set

{
∑

i
αi pi | ∀i αi ∈ R and ∑

i
αi = 1

}
.

For 0 ≤ k < d, a k-flat is the affine hull of a set of k + 1 (affinely independent) points.

Definition 4.8. For parameters ε ∈ (0, 1) and k ∈ {0, 1, . . . , d− 1}, a set K of k-flats is a (k, ε)-net for volume

measure if for any convex body C ⊆ Rd with vol
(

C ∩ [0, 1]d
)
≥ ε, there exists a flat ϕ ∈ K such that

ϕ ∩ C 6= ∅.

4.5.1 Lower bound

Lemma 4.10. For a parameter ε ∈ (0, 1), any (k, ε)-net for volume measure must have size Ωd(1/ε1−k/d).

Proof: Let K be a (k, ε)-net for volume measure. For each k-flat ϕ ∈ K, let H(ϕ, r) be the locus of points in

[0, 1]d within distance at most r from ϕ (for k = 1 in three dimensions, this is the intersection of [0, 1]d and

the cylinder with radius r centered at the line ϕ). Note that a ball b with center c and radius r intersects a

k-flat ϕ if and only if c ∈ H(ϕ, r).

Fix r = (ε/µ)1/d, where µ is a constant to be determined shortly. We claim that by choosing µ appropriately,

if K is a (k, ε)-net for volume measure, then the collection of objects {H(ϕ, r) | ϕ ∈ K} covers [0, 1]d. Indeed,

suppose not. Then there exists a point p ∈ [0, 1]d not covered by any of the objects H(ϕ, r). This implies that

a ball b centered at p with radius r does not intersect any k-flat of K, and its volume is cdrd = cdε/µ, where

cd is a constant that depends on d. Choose µ = cd so that b has volume at least ε, but does intersect any k-flat

of K. A contradiction to the required net property.

Hence, by the choice of r, any (k, ε)-net for volume measure must satisfy the condition in which

{H(ϕ, r) | ϕ ∈ K} covers [0, 1]d. For any k-flat ϕ ∈ K, we have β = vol(H(ϕ, r)) = Od(rd−k) = Od(ε
1−k/d).

Thus, to cover [0, 1]d, we have that |K| ≥ 1/β = Ωd(1/ε1−k/d). QED.

4.5.2 Constructing (k, ε)-nets for volume measure for k > 0

In this section we give a self-contained proof of a deterministic, explicit construction of (k, ε)-nets for

volume measure of size Od(1/ε1−k/d) for k ≥ 1 which matches the lower bound of Lemma 4.10 up to

constant factors. The construction will be done recursively on the dimension d.
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Figure 4.1: The multi-level grid, and its associated lines.

Base case: k = d − 1 Here a (d − 1, ε)-net for volume measure of size d/ε1/d = Od(1/ε1−k/d) follows

readily by overlaying a d-dimensional grid of size length ε1/d and letting the net consist of the hyperplanes

forming the grid. As such, we assume k < d− 1.

Construction The construction is based on quadtrees. Starting with the entire cube [0, 1]d, we construct d

orthogonal hyperplanes which split the cube into 2d cubes of side length 1/2. We refer to such hyperplanes

as splitting hyperplanes. This splitting process is continued recursively inside each cell, for i = 0, . . . , τ,

where

τ =

⌈
1
d

lg
1
ε

⌉
+ 3 dlg(3d)e+ 1 (4.4)

(and lg = log2), so that cubes at the ith level of the construction has side length 1/2i. The number of such

cubes at the ith level is 2di. Naturally, these cubes together form a grid with side length 1/2i. See Figure 4.1

for an illustration of the construction in two dimensions.

For each splitting hyperplane h at level i ≥ 1, which splits cells of side length 1/2i−1 into cells of side

length 1/2i, we recursively construct a (k, εi)-net for volume measure on h (which lies in d− 1 dimensions),

where

εi =
2iε

4d
. (4.5)

We collect all k-flats on all splitting hyperplanes at all levels into our (k, ε)-net for volume measure K.

Analysis

Lemma 4.11. The constructed (k, ε)-net for volume measure has size Od(1/ε1−k/d).

Proof: Let T(ε, d) denote the minimum size of a (k, ε)-net for volume measure over [0, 1]d. The proof is by

induction on d. When d = k + 1, we have T(ε, k + 1) ≤ (k + 1)/ε1/(k+1), by the base case described above.

So assume d ≥ k + 2 and T(δ, d′) ≤ β(d′)/δ1−k/d′ for all d′ < d, where β(d′) is a constant to be determined.
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Figure 4.2: The slice volume, and its 1/9th power, for the unit radius ball C in 10 dimensions. This is an
example of the concavity implied by the Brunn-Minkowski inequality, which in turn implies that the slice
function is unimodal.

By the inductive hypothesis, the above construction produces a (k, ε)-net for volume measure of size

|K| ≤ d
τ

∑
i=1

2i−1T(εi, d− 1) ≤ d
τ

∑
i=1

2i−1β(d− 1)

ε
1−k/(d−1)
i

≤ 4d2β(d− 1)
ε1−k/d

τ

∑
i=1

2i−1

2i−ik/(d−1)

≤ 2d2β(d− 1)
ε1−k/d

τ

∑
i=1

2ik/(d−1) ≤ 4d2β(d− 1)
ε1−k/(d−1)

· 2τk/(d−1) ≤ 16d2β(d− 1)
ε1−k/d .

The last inequality follows since τ ≤ 1
d lg 1

ε + 2. In particular, we obtain the recurrence β(d) = 16d2β(d− 1),

which solves to β(d) = dO(d). As such, the size of K is Od(1/ε1−k/d). QED.

The Brunn-Minkowski inequality and unimodal functions The C be a convex body in Rd. For a parameter

α ∈ R, let f (α) denote the (d− 1)-dimensional volume of C intersected with the hyperplane x = α. The

Brunn-Minkowski inequality [78, 112] implies that the function g(α) = f (α)1/(d−1) is concave. In particular,

g is unimodal. Namely, there exists a β ∈ R such that g is non-decreasing on (−∞, β] and non-increasing on

[β, ∞). As such, the function f itself is unimodal. See Figure 4.2.

Lemma 4.12. The set K is a (k, ε)-net for volume measure.

Proof: Let C be a convex body contained in [0, 1]d with volume at least ε. Assume, for the sake of contradiction,

that C is not stabbed by any of the k-flats of K.

Let h(α) be the hyperplane orthogonal to the first axis which intersects the first axis at α ∈ R. Define the

function

f (α) = vol
(
C ∩ h(α)

)
.

By the Brunn-Minkowski inequality, the function g(α) = f (α)1/(d−1) is concave and unimodal. Define the

point x∗ ∈ [0, 1] so that x? = arg maxα f (α).

Let V(∆) = f (x? + ∆), and let v(∆) = (V(∆))1/(d−1). The function v, being a translation of g, is concave

and unimodal. Let ri ≥ 0 be the maximum number such that V(ri) = εi, for i = 1, . . . , τ. Observe that if

ri ≥ 1/2i, then there is hyperplane orthogonal to the first axis that has a recursive construction of a net on it,
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riri+2

v

ri+1 r1

Figure 4.3: By the choice of rτ ≤ . . . ≤ r1, we have v(rτ) ≥ . . . ≥ v(r1).

for εi. This by induction would imply that the net intersects C. We thus assume from this point on that

ri <
1
2i ,

for all i. Observe that r1 ≥ r2 ≥ · · · ≥ rτ , as ε1 < ε2 < · · · < ετ (more specifically, εi = 2εi−1 for all i).

The concavity of v(·), see Figure 4.3, implies that

v(ri+2)− v(ri+1)

ri+2 − ri+1
≥ v(ri+1)− v(ri)

ri+1 − ri
=⇒ ri+1 − ri

ri+2 − ri+1
≤ v(ri+1)− v(ri)

v(ri+2)− v(ri+1)
,

as ri+1 − ri < 0 and v(ri+2)− v(ri+1) > 0. Since V(ri+1) = εi+1 = 2εi = 2V(ri), we have that v(ri+1) =

21/(d−1)v(ri). For i < τ, let `i = ri − ri+1. Plugging this into the above, observe

`i
`i+1

=
ri − ri+1

ri+1 − ri+2
≤ v(ri+1)− v(ri)

v(ri+2)− v(ri+1)
=

(21/(d−1) − 1)v(ri)

21/(d−1)(21/(d−1) − 1)v(ri)
=

1
21/(d−1)

.

Since `τ−1 ≤ rτ−1 ≤ 1/2τ−1, we have

r1 = rτ +
τ−1

∑
i=1

`i ≤ rτ + `τ−1

(
1 +

1
21/(d−1)

+
1

22/(d−1)
+ · · ·

)
≤ rτ + 2d`τ−1 ≤ (2d + 1)rτ−1 <

2d + 1
2τ−1 <

ε1/d

4d2 ,

by the value of τ, see Eq. (4.4).

Let I1 be the maximum interval, where the value of V(x) ≥ ε1, for any x ∈ I1. By the above, we have that

if the net does not intersect C, then ‖I1‖ ≤ 2r1 ≤ 2ε1/d/(4d2).

We define I2, . . . , Id in a similar fashion on the other axes, and the same argumentation would imply

that
∥∥Ij
∥∥ ≤ 2ε1/d/(4d2), for all j. Furthermore, any plane orthogonal to the axes that avoids the box

B = I1 × I2 · · · × Id has an intersection with C of volume at most ε1. We conclude that the total value of C is

at most

vol(C) ≤ vol(B) +
d

∑
j=1

∫
y∈[0,1]\Ij

vol
(

C ∩ (xj = y)
)

dy ≤
d

∏
j=1

∥∥Ij
∥∥+ dε1 � ε,
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Figure 4.4: The net constructed.

which is a contradiction to vol(C) ≥ ε. QED.

Theorem 4.6. Given ε ∈ (0, 1) and k ∈ {1, . . . , d− 1}, the above is a deterministic and explicit construction of a

(k, ε)-net for volume measure over [0, 1]d of size Od(1/ε1−k/d).

4.5.3 Constructing (0, ε)-nets for volume measure

Ellipsoids are enough We now give constructions for (0, ε)-nets for volume measure. The following result

shows that it suffices to build such nets when the convex bodies are restricted to be ellipsoids.

Lemma 4.13. Suppose there exists a (0, ε)-net for volume measure over [0, 1]d for ellipsoids of size T(ε, τ), for

τ = 1, . . . , d. Then one can construct a (0, ε)-net for volume measure over [0, 1]d of size T(ε/dd, d).

Proof: Consider any convex body C, such that vol
(

C ∩ [0, 1]d
)
≥ ε. Let E be the ellipsoid of largest volume

contained inside C ∩ [0, 1]d. By John’s ellipsoid theorem, we have that E ⊆ C ⊆ dE. In particular,

vol(E) = vol(dE)/dd ≥ vol(C)
dd ≥ ε

dd .

As such, any (0, ε/dd)-net for volume measure when the convex bodies are restricted to be ellipsoids is a

(0, ε)-net for volume measure in the general setting. QED.

Hence, we focus on building (0, ε)-nets for volume measure (equivalently, these are also ε-nets for volume

measure) for ellipsoids. Note that it is easy to obtain an ε-net of size Od(ε
−1 log ε−1) by random sampling

[88]. Here, we give a deterministic, explicit construction of such a net.

We first describe the net construction in two dimensions and then extend the proof and ideas to arbitrary

dimension.

Let E be an ellipse contained in the unit square [0, 1]2 with area(E) ≥ ε. The following construction is

inspired by a construction of Pach and Tardos [129].

Construction Let M = 3 +
⌈
lg ε−1⌉. For j = 1, . . . , M− 1, consider the rectangle

Rj = [0, 1/2M−j]× [0, 1/2j].

55



Y
h

E

Y

y+

y3/4

y1/4

y−

h3/4

h1/4

Z

`k

β

h

E

Figure 4.5: The setup for proof of correctness.

Consider the natural tiling of [0, 1]2 by the rectangle Ri, and let Pi be the set of vertices of the resulting grid

Gi in the interior of the unit square. Let S = ∪iPi. See Figure 4.4.

Correctness We need the following easy observation, whose proof is included for the sake of completeness.

Claim 4.1. Let c be the center of an ellipse E, and let h be the longest horizontal segment contained in E. The segment

h passes through c.

Proof: By the central symmetry of E, if h does not pass through c, then it has a symmetric reflection h′

through c, which is a horizontal segment of the same length. Let ` be the horizontal line through c, and

observe that |` ∩ E| ≥ |h| by convexity. By the smoothness of E, it follows that |` ∩ E| > |h|, which is a

contradiction. QED.

Lemma 4.14. The set S constructed above is an ε-net for volume measure over [0, 1]2 for ellipses. Furthermore,

|S| = O(ε−1 log ε−1).

Proof: Observe that for any i, we have area(Ri) = 2−(M−j)−j = 2−M ≥ ε/8. As such, |Pi| = O(1/ε), and

|S| = O(M/ε) = O(ε−1 log ε−1).

Let E ⊆ [0, 1]2 be any ellipse with area(E) ≥ ε. Let Y denote the projection of E onto the y-axis. Observe

that |Y| ≥ ε. Let h be the longest horizontal segment contained in E (which passes through the center of

E by Claim 4.1). The two extreme y-axis points in E, and the segment h forms a quadrilateral in E of area

|h| |Y| /2, see Figure 4.5. Let Y = [y−, y+], and for α ∈ Y, let g(α) = |{y = α} ∩ E|. We have that

|h| |Y| /2 ≤ area(E) =
∫ y+

α=y−
g(α)dα ≤ |h| |Y| .

Since area(E) ≥ ε, we conclude that |h| ≥ ε/ |Y|.
We set y1/4 = (3/4)y− + (1/4)y+ and y3/4 = (1/4)y− + (3/4)y+. Consider the two horizontal segments

h1/4 = {y = y1/4} ∩ E and h3/4 = {y = y3/4} ∩ E. These two segments are of the same length and are
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parallel. Furthermore, γ = |h1/4| = |h3/4| ≥ |h| /2, see Figure 4.5. Consider the parallelogram Z formed by

the convex hull of h1/4 and h3/4. Observe, that for any α ∈ [y1/4, y3/4], we have that |{y = α} ∩ Z| = γ. As

such, area(Z) = γ · |Y| /2 ≥ |h| /2 · |Y| /2 ≥ ε/4. Let k be the minimum integer such that 1/2k+1 ≤ |Y| /2.

Since |Y| ≥ ε, it follows that k < M− 2.

This implies that the grid Gk+1 has a horizontal line `k that intersects Z. Furthermore, we have

|`k ∩ E| ≥ |`k ∩ Z| = γ ≥ |h|
2
≥ ε

2|Y| ≥ ε2k ≥ 8 · 2k

2M =
1

2M−k−3 >
1

2M−(k+1)
= β,

since M = 3 +
⌈
lg ε−1⌉. Namely, the spacing of the points of Gk+1 on the line `k (i.e., β) is shorter than the

interval `k ∩ E. It follows that a point of Pk+1 ⊆ S lies in E, and thus establishing the claim. QED.

We now extend the previous construction to higher dimensions. The construction is recursive. Namely,

we assume that for all d′ < d we can construct an ε-net for volume measure over [0, 1]d
′

for ellipsoids of size

(β(d′)/ε) lgd′−1(1/ε), where β(d′) is a constant depending on the dimension d′ (to be determined shortly).

Lemma 4.14 proves the claim when d = 2.

Construction Label the d axes x1, . . . , xd. Let τ = d(1/d) lg(1/ε)e and define the function ∆(i) = 2iε1/d.

We repeat the following construction for each axis x`, where ` = 1, . . . , d. For each i = 0, . . . , τ, let

Mi = dlg(1/∆(i))e. For each i, and for each j = 0, . . . , Mi, form 2j + 1 evenly spaced hyperplanes which are

orthogonal to the axis x` (thus consecutive hyperplanes are separated by distance 2−j). For each hyperplane

h, we recursively construct a (0, ε/∆(i + 2))-net P`,i,j for [0, 1]d−1 on h ∩ [0, 1]d. Let P` = ∪τ
i=1 ∪

Mi
j=1 P`,i,j.

Finally, we claim the point set P = ∪d
`=1P` is the desired (0, ε)-net.

Label the d axes x1, . . . , xd. Let τ = d(1/d) lg(1/ε)e and define the function ∆(i) = 2iε1/d. We repeat the

following construction for each axis x`, where ` = 1, . . . , d. For each i = 0, . . . , τ, let Mi = dlg(1/∆(i))e. For

each i, and for each j = 0, . . . , Mi, form 2j + 1 evenly spaced hyperplanes which are orthogonal to the axis

x` (thus consecutive hyperplanes are separated by distance 2−j). For each hyperplane h, we recursively

construct a ε/∆(i + 2)-net P`,i,j for [0, 1]d−1 on h ∩ [0, 1]d. Let P` = ∪τ
i=1 ∪

Mi
j=1 P`,i,j. Finally, we claim the point

set P = ∪d
`=1P` is the desired ε-net for volume measure.

Theorem 4.7. For ε ∈ (0, 2−2d], there exists a ε-net for volume measure over [0, 1]d for ellipsoids, of size

2O(d2)ε−1 lgd−1 ε−1.

Proof: We first bound the size of the resulting net. Since ε ≤ 2−2d, by a direct calculation,

|P| ≤
d

∑
`=1
|P`| ≤ d

τ

∑
i=0

Mi

∑
j=0

(2j + 1) · β(d− 1) ·
(

∆(i + 2)
ε

lgd−2
(

∆(i + 2)
ε

))

≤ 2d · β(d− 1)
ε

τ

∑
i=0

2Mi+1 · 22∆(i) lgd−2
(

∆(i + 2)
ε

)
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≤ 25d · β(d− 1)
ε

τ

∑
i=0

lgd−2
(

2i+2

ε1−1/d

)

≤ 25d · β(d− 1)
ε

τ

∑
i=0

(
(i + 2) + lg

(
1

ε1−1/d

))d−2
.

Since i + 2 ≤ τ + 2 ≤ lg(1/ε) for ε ≤ 2−2d, we have

|P| ≤ 25d · β(d− 1)
ε

[
(τ + 1) · 2d−2 lgd−2

(
1
ε

)]
≤ 25d · β(d− 1)

ε

[
4
d

lg
1
ε
· 2d−2 lgd−2 1

ε

]
.

As such, |P| ≤ 2d+5·β(d−1)
ε lgd−1

(
1
ε

)
. In particular, we obtain the recurrence β(d) = 2d+5β(d− 1), which

solves to β(d) = 2O(d2). Hence, |P| = 2O(d2)ε−1 lgd−1 ε−1.

We now argue correctness. Let E be an ellipsoid of volume at least ε. Let B be the smallest enclosing

axis-aligned box for E. Suppose that the longest edge of B is along the `th axis. In particular, along this `th

axis B has side length s ≥ ε1/d, for otherwise vol(E) ≤ vol(B) ≤ sd < ε. We claim that E intersects a point in

the set P`.

Let L = [`−, `+] be the projection of E onto the `th axis, with s = |L|. For x ∈ L, define H(x) to be the

hyperplane orthogonal to the `th axis which intersects the `th axis at x. Finally, let K be the hyperplane

through the center of E which is orthogonal to the `th axis and set F = E ∩ K. We claim that vol(F) ≥ ε/s.

To prove the claim, suppose towards contradiction that vol(E ∩ K) < ε/s. Then,

vol(E) =
∫ `+

`−
vol(E ∩ H(x))dx <

ε

s

∫ `+

`−
1 dx =

ε

s
|L| = ε,

a contradiction.

Choose an integer i ≥ 0 such that s ∈ [∆(i), ∆(i + 1)). Let z1/4 = (3/4)`− + (1/4)`+ and z3/4 =

(1/4)`− + (3/4)`+. Observe that for all x ∈ [z1/4, z3/4], vol(E ∩ H(x)) ≥ ε/(2s) ≥ ε/∆(i + 2). Next, let

j be the minimum integer such that 1/2j+1 ≤ s/2. Note that such an integer exists, as we can choose

j = dlg(1/s)e. Since s ≥ ∆(i), j ≤ dlg(1/∆(i))e ≤ Mi. Thus, for our choices of i and j, we have found a

hyperplane h which intersects E with vol(E ∩ h) ≥ ε/∆(i + 2). By our recursive construction, there is a point

in the net P`,i,j which intersects E ∩ h and thus E. QED.

Theorem 4.8. There is a deterministic, explicit construction of (0, ε)-nets for volume measure over [0, 1]d of size

Od

(
1
ε

logd−1 1
ε

)
.

Proof: Follows by plugging in the bound for Theorem 4.7 into Lemma 4.13. QED.
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5 The yolk and related geometric consensuses

“
When you have exhausted all possibilities, remember this: you haven’t.

— Thomas Edison

Let P be a set of n points in Rd in general position. A median hyperplane (roughly) splits the point set P

in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of P. The egg of P is

the ball of smallest radius intersecting all hyperplanes which contain exactly d points of P.

We present exact algorithms for computing the yolk and the egg of a point set, both running in expected

time Od(nd−1 log n). The running time of the new algorithm is a polynomial time improvement over existing

algorithms. We also present algorithms for several related problems, such as computing the Tukey and

center balls of a point set, among others.

5.1 BACKGROUND

5.1.1 Voting games and the yolk

Suppose there is a collection of n voters in Rd, where each dimension represents a specific ideology. In a

fixed dimension, each voter maintains a value along this continuum representing their stance on a given

ideology. One can interpret Rd as a policy space, and each point in Rd represents a single policy. In the

Euclidean spatial model, a voter p ∈ Rd always prefers policies which are closer to p under the Euclidean

norm. For two policies x, y ∈ Rd and a set of voters P ⊂ Rd, x beats y if more voters in P prefer policy x

compared to y. A plurality point is a policy which beats all other policies in Rd. For d = 1, the plurality point

is the median voter (when n is odd) [24]. However for d > 1, a plurality point is not always guaranteed

to exist [139]. It is known that one can test if a plurality point exists (and if so, compute it) in O(dn log n)

time [21]. Note that the plurality point is a point of Tukey depth dn/2e—in general this is the largest

possible Tukey depth any point can have; while the centerpoint (Definition 3.1p29) is a point that guarantees

a “respectable” minority of size at least n/(d + 1).

Since plurality points may not always exist, one generalization of a plurality point is the yolk [115]. A

hyperplane is a median hyperplane if the number of voters lying in each of the two closed halfspaces is at
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least dn/2e. The yolk is the ball of smallest radius intersecting all such median hyperplanes. Note that when

a plurality point exists, the yolk has radius zero (equivalently, all median hyperplanes intersect at a common

point).

We also consider the following restricted problem. A hyperplane is extremal if and only if it passes

through d points, under the assumption that the points are in general position. The extremal yolk is the ball

of smallest radius intersecting all extremal median hyperplanes. Importantly, the yolk and the extremal yolk

are different problems—the radius of the yolk and extremal yolk can differ [148].

5.1.2 The egg of a point set

A problem related to computing the yolk is the following: For a set of n points P in Rd, compute the

smallest radius ball intersecting all extremal hyperplanes of P (i.e., all hyperplanes passing through d points

of P). Such a ball is the egg of P. See Figure 5.1 for an illustration of the yolk and egg of a point set.

5.1.3 Linear programs with many implicit constraints

The problem of computing the egg can be written as a linear program (LP) with Θd(nd) constraints,

defined implicitly by the point set P. One can apply Seidel’s algorithm [141] (or any other linear time LP

solver in constant dimension) to obtain an Od(nd) expected time algorithm for computing the egg (or the

yolk, with a bit more work). However, as each d-tuple of points forms a constraint, it is natural to ask if one

can obtain a faster algorithm in this setting. Specifically, we are interested in the following problem: Let I be

an instance of a d-dimensional LP specified via a set of n entities P, where each k-tuple of P induces a linear

constraint in I, for some (constant) integer k. The problem is to efficiently solve I, assuming access to some

additional subroutines.

5.1.4 Previous work

The yolk Let P be a set of n points in Rd. Both the yolk and extremal yolk have been studied in the literature.

The first polynomial time exact algorithm for computing the yolk in Rd was by Tovey in Od
(
n(d+1)2)

time—

in the plane, the running time can be improved to O(n4) [150]. Following Tovey, the majority of results

have focused on computing the yolk in the plane. In 2018, de Berg et al. [21] gave an O(n4/3 log1+ε n)

time algorithm (for any fixed ε > 0) for computing the yolk. Obtaining a faster exact algorithm remained

an open problem. Gudmundsson and Wong [71, 72] presented a (1 + ε)-approximation algorithm with

O(n log7 n log4 ε−1) running time. An unpublished result of de Berg et al. [19] achieves a randomized

(1 + ε)-approximation algorithm for the extremal yolk running in expected time O(nε−3 log3 n).

The egg The egg of a point set in Rd can be computed by solving a linear program with Θd(nd) constraints.

The egg is a natural extension to computing the yolk, and thus obtaining faster exact algorithms is of interest.
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(A) (B)

(C) (D)

Figure 5.1: (A) Points. (B) Median lines and the extremal yolk. (C) All lines and the egg. (D) Points with the
extremal yolk and the egg.
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d = 2 (1 + ε)-apx. Exact Our results (Exact)

Extremal yolk O(nε−3 log3 n)
[19]

O(n4/3 log1+ε n)
[21]

O(n log n)
Theorem 5.1

Yolk O(n log7 n log4 ε−1)
[71]

O(n4/3 log1+ε n)
Variant of [21]

O(n log n)
Theorem 5.2

d = 3

Yolk ? O(n3)
Known techniques

O(n2)
Remark 5.1

d > 3

Extremal yolk ? Od(nd)
Known techniques

Od(nd−1 log n)
Theorem 5.1

Yolk ? Od(nd)
Known techniques

Od(nd−1 log n)
Theorem 5.2

Table 5.1: Some previous work on the yolk and our results. Existing algorithms are deterministic, while the
running time of our algorithms holds in expectation.

The authors are not aware of any previous work on this specific problem. Bhattacharya et al. [23] gave an

algorithm which computes the smallest radius ball intersecting a set of m hyperplanes in O(m) time, when

d = O(1), by formulating the problem as an LP (see also Lemma 5.4). However we emphasize that in our

problem the set of hyperplanes are implicitly defined by the point set P, and is of size Θ(nd) in Rd.

Implicit LPs In 2004, Chan [33] developed a framework for solving LPs with many implicit constraints (the

motivation was to obtain an efficient algorithm for computing the Tukey depth of a point set). Informally,

suppose that each input set P of entities maps to a set H(P) of implicit constraints. For n entities P and a

candidate solution, suppose one can decide if the candidate solution violates any constraints of H(P) in

D(n) time. Additionally, assume that from P, one can construct r = O(1) sets P1, . . . , Pr, each of size at most

n/c (for some constant c > 1) withH(P) =
⋃r

i=1H(Pi). If this partition step can be performed in D(n) time,

then both assumptions imply that the resulting LP can be solved in O(D(n)) expected time.

5.1.5 Our results

In this chapter we revisit Chan’s algorithm for solving LPs with many implicitly defined constraints [33].

The technique leads to efficient algorithms for the following problems. Throughout, let P ⊂ Rd be a set of n

points in general position:

(A) The yolk (and extremal yolk) of P can be computed exactly in Od(nd−1 log n) expected time. Hence in

the plane, the yolk can be computed exactly in O(n log n) expected time. This improves all existing

algorithms (both exact and approximate) [19, 21, 71, 72, 150] for computing the yolk in the plane, and

our algorithm easily generalizes to higher dimensions. See Table 5.1 for a summary of our results and

previous work.
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(B) By a straight-forward modification of the above algorithm, see Lemma 5.7, implies that the egg of P

can be computed in Od(nd−1 log n) expected time. The authors are not aware of any previous work on

this specific problem.

(C) Let Hk(P) be the collection of all open halfspaces which contain at least n− k points of P. Consider

the convex polygon Tk = ∩h∈Hk(P)h. Observe that T0 is the convex hull of P, with T0 ⊇ T1 ⊇ · · · . The

centerpoint theorem implies that Tn/(d+1) is non-empty (and contains the centerpoint). The Tukey

depth of a point q in the minimal k such that q ∈ Tk \ Tk+1.

When Tk is non-empty, the center ball of P is the ball of largest radius contained inside Tk. For Tk

empty, we define the Tukey ball of P as the smallest radius ball intersecting all halfspaces of Hk(P).

In Section 5.5 we show that the Tukey ball and center ball can both be computed in Õd
(
kd−1[1 +

(n/k)bd/2c]) expected time (see Lemma 5.12 and Lemma 5.14, respectively). In particular when k is a

(small) constant, a point of Tukey depth k can be computed in time Õd(nbd/2c). This improves Chan’s

Od(nd−1 log n) expected time algorithm for deciding if there is a point of Tukey depth at least k [33].

(D) For a set Q ⊆ Rd, let conv(Q) denote the convex hull of Q. For a given integer k let C(P, k) ={
conv(Q) | Q ∈ (P

k)
}

, where (P
k) is the set of all k-tuples of points of P. We define the k-ball of P as the

smallest radius ball intersecting all convex bodies in C(P, k).

While one may be tempted to apply the techniques discussed so far for implicit LPs, there is a faster

algorithm using (≤ k)-sets. When k is constant, in Lemma 5.15 we present an algorithm for computing

the k-ball in Od(nbd/2c + n log n) expected time. As such, the smallest ball intersecting all triangles

induced by triples of a set of n points in R3 can be computed in O(n log n) expected time.

In Section 5.7, we present another application of Chan’s technique for solving implicit LP-type problems.

(E) Given a set L of n lines in the plane, the crossing distance between two points p, q ∈ R2 is the number

of lines of L intersecting the segment pq. Given a point q ∈ R2 not lying on any lines of L, the disk

of smallest radius containing all vertices of A(L) within crossing distance at most k from q can be

computed in O(n log n) expected time. See Lemma 5.16.

5.2 PRELIMINARIES

Notation. In this chapter, Õ hides factors of the form logc n, where c may depend on the dimension d.

5.2.1 LP-type problems

An LP-type problem, introduced by Sharir and Welzl [145], is a generalization of a linear program. LetH
be a set of constrains and f be an objective function. For any B ⊆ H, let f (B) denote the value of the optimal
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solution for the constraints of B. The goal is to compute f (H). If the problem is infeasible, let f (H) = ∞.

Similarly, define f (H) = −∞ if the problem is unbounded.

Definition 5.1. Let H be a set of constraints, and let f : 2H → R ∪ {∞,−∞} be an objective function. The

tuple (H, f ) forms an LP-type problem if the following properties hold:

(A) MONOTONICITY. For any B ⊆ C ⊆ H, we have f (B) ≤ f (C).
(B) LOCALITY. For any B ⊆ C ⊆ H with f (C) = f (B) > −∞, and for all s ∈ H, f (C) < f (C + s) ⇐⇒

f (B) < f (B + s), where B + s = B ∪ {s}.

A basis ofH is an inclusion-wise minimal subset b ⊆ H with f (b) = f (H). The combinatorial dimension

δ is the maximum size of any feasible basis of any subset ofH. Throughout, we consider δ to be constant.

For a basis b ⊆ H, we say that h ∈ H violates the current solution induced by b if f (b+ h) > f (b).

LP-type problems with n constraints can be solved in randomized time O(n), hiding constants depending

(exponentially) on δ [48], where the bound on the running time holds with high probability.

5.2.2 Implicit LPs using Chan’s algorithm

Our algorithms will need the following result of Chan [33] on solving LPs with implicitly defined

constraints.

Lemma 5.1 ([33]). Let (H, f ) be an LP-type problem of constant combinatorial dimension δ, and let cδ be a constant

that depends only on δ. Let ψ, c > 1 be fixed constants, such that cδ logδ ψ < c. For an input space Π, suppose that

there is a function g : Π→ 2H which maps inputs to constraints. Furthermore, assume that for any input P ∈ Π of

size n, we have:

(I) When n = O(1), a basis for g(P) can be computed in constant time.

(II) For a basis b, one can decide if b satisfies g(P) in D(n) time.

(III) In D(n) time, one can construct sets P1, . . . , Pψ ∈ Π, each of size at most n/c, such that g(P) =
⋃ψ

i=1 g(Pi).

Then a basis for g(P) can be computed in O(D(n)) expected time (hiding constants depending on δ), assuming that

D(n/k) = O(D(n)/k), for all positive integers k ≤ n.

5.2.3 Duality, levels, and zones

The following definitions and facts are well known in computational geometry. See also de Berg et al. [18]

for additional context.

Definition 5.2 (Duality). The dual hyperplane of a point p = (p1, . . . , pd) ∈ Rd is the hyperplane p? defined

by the equation xd = −pd + ∑d−1
i=1 xi pi. The dual point of a hyperplane h defined by xd = ad + ∑d−1

i=1 aixi is

the point h? = (a1, a2, . . . , ad−1,−ad).
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Fact 5.1. Let p be a point and let h be a hyperplane. Then p lies above h if and only if the hyperplane p? lies below the

point h?.

Given a set of objects T (e.g., points in Rd), we let T? = {x? | x ∈ T} denote the dual set of objects.

Definition 5.3 (Levels). For a collection of hyperplanes H in Rd, the level of a point p ∈ Rd is the number of

hyperplanes of H lying on or below p. The k-level of H is the union of points in Rd which have level equal

to k. The (≤ k)-level of H is the union of points in Rd which have level at most k.

By Fact 5.1, if h is a hyperplane which contains k points of P lying on or above it, then the dual point h? is

a member of the k-level of P?.

For a set of hyperplanes H, we let A(H) denote the arrangement of H and V(A(H)) denote the vertices

of the arrangement of H.

Definition 5.4 (Zone of a surface). For a collection of hyperplanes H in Rd, the complexity of a cell ψ in the

arrangement A(H) is the number of faces (of all dimensions) which are contained in the closure of ψ. For a

(d− 1)-dimensional surface γ, the zone Z(γ, H) of γ is the subset of cells of A(H) which intersect γ. The

complexity of a zone is the sum of the complexities of the cells in Z(γ, H).

The complexity of a zone of a hyperplane is known to be Θ(nd−1) [57]; for general algebraic surfaces it is

larger by a logarithmic factor. Furthermore, the cells in the zone of a surface can be computed efficiently

using lazy randomized incremental construction [20].

Lemma 5.2 ([12, 20]). Let H be a set of n hyperplanes in Rd and let γ be a (d− 1)-dimensional algebraic surface

of degree δ. The complexity of the zone Z(γ, H) is Od,δ(nd−1 log n) (the hidden constants depend on d and δ). The

collection of cells in Z(γ, H) can be computed in Od,δ(nd−1 log n) expected time.

5.3 COMPUTING THE EXTREMAL YOLK

Definition 5.5. Let P ⊂ Rd be a set of n points in general position. A median hyperplane is a hyperplane

such that each of its two closed halfspaces contain at least dn/2e points of P. A hyperplane is extremal if it

passes through d points of P. The extremal yolk is the ball of smallest radius interesting all extremal median

hyperplanes of P.

We give an Od(nd−1 log n) expected time exact algorithm computing the extremal yolk. To do so, we focus

on the more general problem.

Problem 5.1. Let Ek(P) be the collection of extremal hyperplanes which contain exactly k points of P on or

above it. Here, k is not necessarily constant. The goal is to compute the smallest radius ball intersecting all

hyperplanes of Ek(P).
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We observe that computing the extremal yolk can be reduced to the above problem.

Lemma 5.3. The problem of computing the extremal yolk can be reduced to Problem 5.1.

Proof: Suppose that n is even, and define the set Seven = {n/2, n/2 + 1, . . . , n/2 + d}. A case analysis shows

that any extremal median hyperplane h must have exactly m points of P above or on h, where m ∈ Seven.

Thus, computing the extremal yolk reduces to computing smallest radius ball intersecting all hyperplanes in

the set
⋃

m∈Seven Em(P).

When n is odd, a similar case analysis shows that any extremal median hyperplane must have exactly m

points above or on it, where m ∈ Sodd = {dn/2e , dn/2e+ 1, . . . , dn/2e+ d− 1}. Analogously, computing

the extremal yolk with n odd reduces to computing the smallest radius ball intersecting all hyperplanes in

the set
⋃

m∈Sodd
Em(P). QED.

To solve Problem 5.1, we apply Chan’s result for solving implicit LP-type problems [33], stated in

Lemma 5.1. We first prove that Problem 5.1 is an LP-type problem when the constraints are explicitly given

(the following Lemma was also observed by Bhattacharya et al. [23]).

Lemma 5.4. Problem 5.1 when the constraints (i.e., hyperplanes) are explicitly given, is an LP-type problem and has

combinatorial dimension δ = d + 1.

Proof: We prove something stronger, namely that the problem can be written as a linear program, implying it

is an LP-type problem. LetH be the set of n hyperplanes. For each hyperplane h ∈ H, let 〈ah, x〉+ bh = 0 be

the equation describing h, where ah ∈ Rd, ‖ah‖ = 1, and bh ∈ R. Because of the requirement that ‖ah‖ = 1,

for a given point p ∈ Rd, the distance from p to a hyperplane h is |〈ah, p〉+ bh|.
The linear program has d + 1 variables and 2n constraints. The d + 1 variables represent the center p ∈ Rd

and radius r ≥ 0 of the egg. The resulting LP is

min r

subject to r ≥ 〈ah, p〉+ bh ∀h ∈ H

r ≥ −
(
〈ah, p〉+ bh

)
∀h ∈ H

p ∈ Rd.

As for the combinatorial dimension, observe that any basic feasible solution for the above linear program

will be tight for at most d + 1 of the above 2n constraints. Namely, these d + 1 planes are tangent to the

optimal radius ball, and as such form a basis b ⊆ H. QED.

To apply Lemma 5.1 we need to: (i) design an appropriate input space, (ii) develop a decider, and

(iii) construct a constant number of subproblems which cover the constraint space.
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Figure 5.2: A disk and its dual.

5.3.1 Building the decider

The algorithm will work in the dual space. In the dual, the interior of a ball b corresponds to a closed

region b? which lies between two branches of a hyperboloid, see Figure 5.2.

Lemma 5.5. The dual of the set of points in a ball is the set of hyperplanes whose union forms the region enclosed

between two branches of a hyperboloid.

Proof: In Rd the hyperplane h defined by xd = β + ∑d−1
i=1 αixi, or more compactly 〈x, (−α, 1)〉 = β, intersects

a disk b centered at p = (p1, . . . , pd) with radius r ⇐⇒ the distance of h from p is at most r. That is, h

intersects b if

|〈p, (−α, 1)〉 − β|
‖(−α, 1)‖ ≤ r ⇐⇒ (〈p, (−α, 1)〉 − β)2 ≤ r2 ‖(−α, 1)‖2

⇐⇒
(

pd − β−
d−1

∑
i=1

αi pi

)2
≤ r2(‖α‖2 + 1).

⇐⇒
(

pd − β−∑d−1
i=1 αi pi

)2

r2 − ‖α‖2 ≤ 1.

The boundary of the above inequality is a hyperboloid in the variables pd − β−∑d−1
i=1 αi pi and α1, . . . , αd−1.

This corresponds to an affine image of a hyperboloid in the dual space α×−β. QED.

Throughout, we let b? denote the region between the two branches of the hyperboloid dual to a ball b.

Algorithm Given a candidate solution (i.e., a ball b in the primal) and a collection of points Q ⊆ P. Our

goal is to construct a decider which detects if there is a hyperplane of Ek(P), passing through d points of

Q, which avoids the interior of the ball b. In the dual setting, the problem is to decide if there is a vertex of

A(Q?) which is a member of the k-level, and is inside the region Rd \ b?.

The input The input to the algorithm is a simplex ∆, the set of hyperplanes

H = P? ∩ ∆ = {h ∈ P? | h ∩ ∆ 6= ∅}
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∆′

∆′′

b?

∆ ∩ b?

Figure 5.3: The region ∆ ∩ (Rd \ b?) consists of (at most) two disjoint convex regions, ∆′ and ∆′′.

(i.e., all hyperplanes of P? that intersect ∆), a candidate solution b?, and a parameter u which is the number

of hyperplanes of P? lying completely below ∆.

The task Decide if there is a vertex of A(P?) of the k-level in ∆ ∩ (Rd \ b?). That is, there is a vertex of

level k that is outside b? but inside ∆.

The decision procedure Consider the set ∆ ∩ (Rd \ b?), where ∆ is a simplex, and notice that the set is the

union of at most two convex regions. Indeed, the set Rd \ b? consists of two disjoint connected components,

where each component is a convex body. Intersecting a simplex ∆ with each component of Rd \ b? produces

two (disjoint) convex bodies ∆′ and ∆′′ (it is possible that ∆′ or ∆′′ are empty). See Figure 5.3. Let ∆′ be one

of these two regions of interest. The algorithm will process ∆′′ in exactly the same way.

If ∆′ is empty, then no constraints are violated. Otherwise, we need to check for any violated constraints

inside ∆′. Let ∂∆′ denote the boundary of ∆′. Define H′ ⊆ H to be the subset of hyperplanes intersecting ∆′.

Observe that it suffices to check if there is a vertex v in the arrangement A(H′) such that: (i) v has level k in

P?, (ii) v is a member of some cell in the zone Z(∂∆′, H′), and (iii) v is contained in ∆′.

The algorithm computes Z(∂∆′, H′). Next, it chooses a vertex v of the arrangement A(H′) which lies

inside ∆′ and computes its level in H′ (adding u to the count). The algorithm then walks around the vertices

of the zone inside ∆′, computing the level of each vertex along the walk. Note that the level between any

two adjacent vertices in the arrangement differ by at most a constant (depending on d). If at any point we

find a vertex of the desired level (such a vertex also lies inside ∆′), we report the corresponding median

hyperplane which violates the given ball b. See Figure 5.4 for an illustration.

Analysis The running time of the algorithm is proportional to the complexity of the zone Z(∂∆′, H′).

Because the boundary of ∆′ is constructed from d + 1 hyperplanes and the boundary of the hyperboloid,

Lemma 5.2 implies that the zone complexity is no more than Od(|H|d−1 log |H|). As such, our decision

procedure runs in time D(n) = Od(nd−1 log n).

68



Figure 5.4: Left: A convex region ∆′. Let H′ be the set of lines intersecting ∆′, with one line lying completely
below ∆′ (u = 1). The shaded regions are the cells of A(H′) intersecting ∂∆′. The vertices of the cells in
the zone Z(∂∆′, H′) are highlighted. Right: The vertices of Z(∂∆′, H′) which are part of the 3-level and
contained inside ∆′.

5.3.2 Constructing subproblems

To decompose a given input into smaller subproblems, we need the notion of cuttings.

Definition 5.6 (Cuttings). Given n hyperplanes in Rd, a (1/c)-cutting is a collection of interior disjoint

simplices covering Rd, such that each simplex intersects at most n/c hyperplanes. A (1/c)-cutting of size

Od(cd) can be constructed in Od(ncd−1) time [45].

Given a simplex ∆ and the set of hyperplanes H = P? ∩ ∆, we compute a (1/c)-cutting of H into Od(cd)

simplices, and clip this cutting inside ∆. For each cell in this new cutting, we compute the set of hyperplanes

which intersect it, and the number of hyperplanes lying completely below the cell naively in O(|H|) time.

Repeating this process for the Od(cd) cells implies that this decomposition procedure can be completed in

O(|H|) time (ignoring dependencies on d), as (1/c)-cuttings can be constructed deterministically in time

Od(n) for constant c [45].

The above shows that we can decompose a given input of size n into ψ = Od(cd) subproblems, each of

size at most n/c. Furthermore, this decomposition preserves all implicit constraints of interest (vertices of

A(H)). Choosing c to be a sufficiently large constant (possibly depending on d), to meet the requirements of

Lemma 5.1, finishes the construction.

5.3.3 Putting it all together

The above discussions together with Lemma 5.1 and D(n) = Od(nd−1 log n) implies the following.

Lemma 5.6. Let P ⊂ Rd be a set of n points in general position. For a given integer k, one can compute in

Od(nd−1 log n) expected time the smallest radius ball intersecting all of the hyperplanes of Ek(P)

Corollary 5.1. Let P ⊂ Rd be a set of n points in general position, and let S ⊆ JnK, where JnK = {1, . . . , n}. One

can compute in Od(nd−1 log n) expected time the smallest radius ball intersecting all of the hyperplanes of
⋃

k∈S Ek(P)

69



Proof: The algorithm is a slight modification of Lemma 5.6. During the decision procedure, for each vertex

in the zone, we check if it is a member of the k-level for some k ∈ S. If S is of non-constant size, membership

in S can be checked in constant time using hashing. QED.

5.3.4 Computing the extremal yolk and the egg

Theorem 5.1. Let P ⊂ Rd be a set of n points in general position. One can compute the extremal yolk of P in

Od(nd−1 log n) expected time.

Proof: The result follows by applying Corollary 5.1 with the appropriate choice of S. When n is even,

Lemma 5.3 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we set S = {dn/2e , dn/2e+
1, . . . , dn/2e+ d− 1}. QED.

Lemma 5.7. Let P ⊂ Rd be a set of n points in general position. One can compute the egg of P in Od(nd−1 log n)

expected time.

Proof: Follows by Corollary 5.1 with S = JnK. (Alternatively, by directly modifying the decision procedure

to check if any vertex of the zone Z(∆′, H′) lies inside ∆′.) QED.

5.3.5 An algorithm sensitive to k

Recall that to compute the extremal yolk, we reduced the problem to computing the smallest ball inter-

secting all hyperplanes which contain a fixed number of points of P above or on them (see Lemma 5.3).

In particular, we developed an algorithm for Problem 5.1 and applied it when k is proportional to n. It is

natural to ask for an algorithm for Problem 5.1 which is faster when k is small. The algorithm will work for

all values of k. However when k is large, the running time deteriorates to the running time of the algorithm

of Lemma 5.6.

To develop an algorithm sensitive to k, we use the result of Lemma 5.6 as a black-box and introduce the

notion of shallow cuttings.

Definition 5.7 (Shallow cuttings). Let H be a set of n hyperplanes in Rd. A k-shallow cutting is a collection

of simplices such that: (i) the union of the simplices covers the (≤ k)-level of H (see Definition 5.3), and

(ii) each simplex intersects at most k hyperplanes of H.

Matoušek was the first to prove existence of k-shallow cuttings of size Od((n/k)bd/2c) [113]. When d = 2, 3,

a k-shallow cutting of size O(n/k) can be constructed in O(n log n) time [40]. A similar result holds in higher

dimensions (the proof is sketched in [79]).

Lemma 5.8 ([79]). Let H be a set of n hyperplanes in Rd. A k-shallow cutting of size Od((n/k)bd/2c) can be

constructed in Od(k(n/k)bd/2c + n log n) expected time. For each simplex ∆ in the cutting, the algorithm returns the

set of hyperplanes intersecting ∆ and the number of hyperplanes lying below ∆.

70



Let P ⊂ Rd be a set of n points and let H = P? be the set of dual hyperplanes. The algorithm itself is a

randomized incremental algorithm, mimicking Seidel’s algorithm for solving LPs [141]. First, compute a

k-shallow cutting for the set of hyperplanes H using Lemma 5.8. Let ∆1, . . . , ∆`, where ` = Od((n/k)bd/2c),

be the collection of simplices in the cutting. For each simplex ∆i, we have the subset H ∩ ∆i and the number

of hyperplanes lying completely below H (which is at most k). For each cell ∆i, let g(∆i) be the set of vertices

of A(H) which have level k and are contained in ∆i.

The algorithm The input to the algorithm is a set of simplices and an initial ball b0. Such a ball is uniquely

defined by a subset of d + 1 constraints, and this is a basis for the LP-type problem.

Begin by randomly permuting the simplices ∆1, . . . , ∆`. At all times, the algorithm maintains a ball bi of

smallest radius which meets all the constraints defined by ∪i
j=1g(∆i) in the dual. In the ith iteration, the

algorithm performs a violation test: it decides if any constraint of g(∆i) is violated by b?i−1. If so, the algorithm

executes a basis computation, in which it computes the ball b′i of smallest radius which obeys the constraints of

g(∆i) in the dual and the d + 1 constraints defining bi−1. The algorithm then computes a ball bi by invoking

itself recursively on the subset of cells ∆1, . . . , ∆i with b′i as the initial basis.

Lemma 5.9. Let P ⊂ Rd be a set of n points in general position. For a given integer k, one can compute in

Õd

(
kd−1(1 + (n/k)bd/2c)) expected time the smallest radius ball intersecting all of the hyperplanes of Ek(P).

Proof: The algorithm is described above. As for the analysis, it is similar to any randomized incremental

algorithm for LP-type problems. The key difference is that we are not adding a single constraint incrementally,

but rather a collection of constraints in each iteration. Fortunately, this does not change the analysis of the

algorithm (for further details, see the proof of Lemma 5.1 in [33] or [79]).

It is known that in expectation, the algorithm performs Od((n/k)bd/2c) violation tests and Od(logd+1(n/k))

basis computations [145]. Since each simplex ∆i intersects O(k) hyperplanes of H, each of these subroutines

can be implemented in Od(kd−1 log k) time using Lemma 5.6. Finally, we account for the time needed

to construct the shallow cutting—by Lemma 5.8 this can be done in Od(k(n/k)bd/2c + n log n) expected

time. QED.

5.4 COMPUTING THE (CONTINUOUS) YOLK

Definition 5.8. Let P ⊂ Rd be a set of n points in general position. The continuous yolk of P is the ball of

smallest radius intersecting all median hyperplanes of P.

In contrast to Definition 5.5, we emphasize that the (continuous) yolk must intersect all median hyper-

planes defined by P (not just extremal median hyperplanes).

As before, the algorithm works in the dual space. For an integer k, let Hk(P) be the collection of halfspaces

containing exactly k points of P on or above it. Equivalently, P? is the collection of hyperplanes defined
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Figure 5.5: Left: A set of lines and the cells of the 3-level. Middle: A simplex ∆, with the portion of the 3-level
inside ∆. Right: Triangulating the portion of the 3-level contained inside ∆. All red triangles together with
the lower dimensional faces of the 3-level form the set of constraints g(∆).

by P in the dual space, and
(

Hk(P)
)? is the k-level of P?. Our problem can be restated in the dual space as

follows.

Problem 5.2. Let P be a set of points in Rd in general position and let k be a given integer. Compute the ball

b of smallest radius so that all points in the k-level of P? are contained inside the region b?.

Let Lk(P) =
(

Hk(P)
)? denote the set of all points in the k-level of P?. Note that Lk(P) consists of points

which are either contained in the interior of some `-dimensional flat, where 0 ≤ ` ≤ d− 1, or in the interior

of some d-dimensional cell of A(P?).

We take the same approach as the algorithm of Theorem 5.1—building a decider subroutine, and showing

that the input space can be decomposed into subproblems efficiently. However the problem is more subtle,

as the collection of constraints (i.e., median hyperplanes) is no longer a finite set.

The input space The input consists of a simplex ∆. The algorithm, in addition to ∆, maintains the set of

hyperplanes

H = P? ∩ ∆ = {h ∈ P? | h ∩ ∆ 6= ∅},

and a parameter u which is equal to the number of hyperplanes of P? lying completely below ∆.

The implicit constraint space Each input ∆ maps to a region R which is the portion of the k-level Lk(P)

contained inside ∆. For each d-dimensional cell in R, we compute its bottom-vertex triangulation (see, e.g.,

[112, Section 6.5]), and collect all of these simplices, and all lower dimensional faces of R, into a set g(∆), see

Figure 5.5.

Let Ξ be the collection of all simplices formed from d + 1 vertices of the arrangement A(P?). We letH be

the union of the sets g(∆) over all simplices ∆ ∈ Ξ. To see why this suffices, each simplex in the input space

is a simplex generated by a cutting algorithm. One property of cutting algorithms [45] is that the simplices

returned are induced by hyperplanes of P?. Indeed, each simplex has (at most) d + 1 vertices, and upon
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inspection of the cutting algorithm, each vertex is defined by d hyperplanes of P?. There are a finite number

of simplices ∆ to consider, and each ∆ induces a fixed subset of constraints g(∆) ⊆ H.

As such,H forms our constraint set, where each constraint is of constant size (depending on d). Clearly, a

solution satisfies all constraints ofH if and only if the solution intersects all hyperplanes in the set Hk(P).

For a given subset C ⊆ H, the objective function is the minimum radius ball b such that all regions of C are

contained inside the region b?. In particular, the problem of computing the minimum radius ball b such that

b? contains all points of Lk(P) in its interior is an LP-type problem of constant combinatorial dimension.

Constructing subproblems For a given input simplex ∆ (along with the set H = P? ∩ ∆ and the number

u) a collection of subproblems ∆1, . . . , ∆ψ (with the corresponding sets Hi and numbers ui for i = 1, . . . , ψ)

can be constructed as described in Section 5.3.2, by computing a cutting of the planes H and clipping this

cutting inside ∆. In particular, we have that
⋃

i g(∆i) = g(∆). Strictly speaking, we have not decomposed

the constraints of g(∆) (as required by Lemma 5.1), but rather have decomposed the region which is the

union of the constraints of g(∆). This step is valid, as a solution satisfies the constraints of
⋃

i g(∆i) if and

only if it satisfies the constraints of g(∆).

The decision procedure Given a candidate solution b?, the problem is to decide if b? contains g(∆) in its

interior. The decision algorithm itself is similar as in the proof of Theorem 5.1. Consider the set ∆∩ (Rd \ b?),

where ∆ is a simplex, and notice that it is the union of the most two convex regions. Let ∆′ be one of these

two regions of interest. Observe that it suffices to check if there is a point on the boundary of ∆′ which is

part of the k-level. Let H′ ⊆ H be the subset of hyperplanes intersecting ∆′.

To this end, compute Z(∂∆′, H′). For each (d − 1)-dimensional face f of ∆′, the collection of regions

Ξ = { f ∩ s | s ∈ Z(∂∆′, H′)} forms a (d− 1)-dimensional arrangement restricted to f . Furthermore, the

complexity of this arrangement lying on f is at most O(nd−1 log n). Notice that the level of all points in the

interior of a face of Ξ is constant, and two adjacent faces (sharing a boundary) have their level differ by at

most a constant. The algorithm picks a face in Ξ, computes the level of an arbitrary point inside it (adding

u to the count). Then, the algorithm walks around the arrangement, exploring all faces, using the level of

neighboring faces to compute the level of the current face. If at any step a face has level k, we report that the

input (∆, H, u) violates the candidate solution b?.

Analysis of the decision procedure We claim the running time of the algorithm is proportional to the

complexity of the zone Z(∂∆′, H′). Indeed, for each (d− 1)-dimensional face f of ∆′ (where f may either

be part of a hyperplane or part of the boundary of b?), we can compute the set { f ∩ s | s ∈ Z(∂∆′, H′)} in

time proportional to the total complexity of Z(∂∆′, H′) (assuming we can intersect a hyperplane with a

portion of a constant degree surface efficiently). The algorithm then computes the level of an initial face

naively in Od(|H′|) time, and computing the level of all other faces can be done in Od(|Z(∂∆′, H′)|) time by
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performing a graph search on the arrangement.

Because the boundary of ∆′ is constructed from d + 1 hyperplanes and the boundary of the hyperboloid,

Lemma 5.2 implies that the zone complexity is Od(|H|d−1 log |H|). As such, our decision procedure runs in

time D(n) = Od(nd−1 log n).

Lemma 5.10. Problem 5.2 can be solved in Od(nd−1 log n) expected time, where n = |P|.

Proof: Follows by plugging the above discussion into Lemma 5.1. QED.

By modifying the decision procedure appropriately, we also obtain a similar result to Corollary 5.1.

Corollary 5.2. Let P ⊂ Rd be a set of n points in general position, and let S ⊂ JnK. The smallest ball intersecting all

hyperplanes in
⋃

k∈S Hk(P) can be computed in Od(nd−1 log n) expected time.

Theorem 5.2. Let P ⊂ Rd be a set of n points in general position. One can compute the yolk of P in Od(nd−1 log n)

expected time.

Proof: The result follows by applying Corollary 5.2 with the appropriate choice of S. When n is even,

Lemma 5.3 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we set S = {dn/2e , dn/2e+
1, . . . , dn/2e+ d− 1}. QED.

Remark 5.1. In R3, one can shave the O(log n) factor to obtain an O(n2) expected time algorithm for the

yolk. We modify the decision procedure as follows, which avoids computing the zone Z(∂∆′, H′). For each

2D face f of ∆′, simply compute the arrangement of the set of lines { f ∩ h | h ∈ H} on f in O(n2) time. As

before, we perform a graph search on this arrangement, computing the level of each face. If any time we

discover a point on the boundary of ∆′ of the desired level, we report that the given input violates the given

candidate solution.

5.5 COMPUTING THE TUKEY BALL AND CENTER BALL

For a given point q ∈ Rd and point set P ⊂ Rd, the Tukey depth of q is the largest integer k such that

any closed halfspace γ containing q must contain at least k points of P. Equivalently, if Hk(P) is the set of

all open halfspaces containing more than n− k points of P, then any point contained in the intersection

Tk =
⋂{γ | γ ∈ Hk(P)} is a point of Tukey depth at least k. The centerpoint theorem implies that there is

always a point of Tukey depth at least n/(d + 1).

Definition 5.9. Let P ⊂ Rd be a set of n points in general position. For a parameter k ≤ n, the Tukey ball of P

is the smallest radius ball intersecting halfspaces in the set Hk(P).

The Tukey median is a point in Rd with maximum Tukey depth. If the Tukey median of P has Tukey

depth k(P), then for k > k(P) the set Tk is empty—the Tukey ball has non-zero radius. When k ≤ k(P), Tk is

non-empty, implying that the Tukey ball has radius zero.
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Definition 5.10. Let P ⊂ Rd be a set of n points in general position. For a parameter k ≤ k(P), the center ball

of P is denoted as the ball of largest radius contained in the region Tk.

Recently, Oh and Ahn [128] develop a O(n2 log4 n) time algorithm for computing the polytope Tk in R3

when k = n/(d + 1) = n/4. In contrast, the center ball is the largest ball contained inside Tk, and we show it

can be computed in expected time O(n2 log n).

5.5.1 The Tukey ball in the dual

For a set of n points P in general position, it suffices to restrict our attention to hyperplanes which contain

d points of P, and one of the open halfspaces contains more than n− k points of P. In the dual, each point

p ∈ P is mapped to a hyperplane p? (see Definition 5.2). A hyperplane h passing through d points of P maps

to a point h? which is a vertex in the arrangement A(P?).

Definition 5.11 (Top and bottom levels). Let H be a set of hyperplanes in Rd. The top-level (resp. bottom-

level) of a point p ∈ Rd is the number of hyperplanes of H lying above (resp. below) p. The k-top level

(resp. k-bottom level), denoted as Tk(H) (resp. Bk(H)), is the set of vertices of A(H) which have top-level

(resp. bottom-level) equal to k.

Recall that by Lemma 5.5, a ball b in the primal maps to the region enclosed by two branches of a

hyperboloid. Formally, the region b? is the collection of points (x1, . . . , xd) ∈ Rd satisfying has the equation

(xd/αd)
2 −∑d−1

i=1 (xi/αi)
2 ≤ 1, where α1, . . . , αd ∈ R define the hyperboloid, and are determined by b. We

say that a point (x1, . . . , xd) lies above the top branch of b? if the inequality xd ≥ αd

√
1 + ∑d−1

i=1 (xi/αi)2

holds. A point lying below the bottom branch of b? is defined analogously.

Let h be a hyperplane. Suppose the open halfspace h− below h contains k points of P. In the dual, a vertical

ray ρh shooting upwards from the point h? intersects k hyperplanes of P?. When a hyperplane h intersects b

in its interior, then b ∩ h− 6= ∅ and b 6⊆ h−. In the dual, b? contains the point h?, and the upward ray ρh

intersects the boundary of b? once. Alternatively, if b ⊆ h−, then in the dual the upward ray ρh intersecting

the boundary of b? twice (once each at the top and bottom branch). As such, if h− is an open halfspace

containing k points of P below it and does not intersect b, then the upward ray ρh does not intersect the

boundary of b?. Hence, ρh must lie entirely above the top branch of b?. See Figure 5.6.

Summarizing the above discussion, the problem of computing the Tukey ball is equivalent to the following.

Problem 5.3. Let P ⊂ Rd be a set of n points in general position. The goal is to compute the ball b of smallest

radius such that:

(I) for each vertex of the k-top level Tk(P?), the vertical upward ray intersects b?, and

(II) for each vertex of the k-bottom level Bk(P?), the vertical downward ray intersects b?.

Lemma 5.11. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The Tukey ball can be

computed in Od(nd−1 log n) expected time.
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a− b−

c−

ρa

ρc

ρb

Figure 5.6: A ball and three lines. Each line induces a halfspace which lies below the line. In the dual, this
corresponds to three vertically upward rays.

Proof: The proof uses Lemma 5.1 to solve the dual problem (this problem is LP-type with constant combina-

torial dimension, where the constant depends on d). The input consists of a simplex ∆. A given input can be

decomposed using cuttings, as in the algorithms for Theorem 5.1 and Theorem 5.2.

We sketch the decision procedure. Let H = P? ∩ ∆. Given a candidate ball b, we want to decide if b?

violates any constraints induced by H. Equivalently, b? is an invalid solution if either condition holds:

(i) there is a element of Tk(P?) which is above the top branch of b?, or (ii) there is a element of Bk(P?) which is

below the bottom branch of b?. As such, a straight-forward modification of the decision procedure described

in Section 5.3.1 yields a decider in Od(|H|d−1 log |H|) expected time. QED.

Improved algorithm

Lemma 5.12. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The Tukey ball can be

computed in Õd

(
kd−1(1 + (n/k)bd/2c)) expected time.

Proof: The algorithm is the same as described in Lemma 5.9 with a small change: compute a shallow cutting

for the (≤ k)-top level and (≤ k)-bottom level of P?. Now run the randomized incremental algorithm of

Lemma 5.9 on these collection of simplices with Lemma 5.11 as a black-box to solve the subproblems of

smaller size. QED.

5.5.2 The center ball in the dual

For a parameter k, recall that our goal is to compute the largest ball which lies inside all open halfspaces

containing more than n− k points of P. From the discussion above, in the dual this corresponds to the

following problem.

Problem 5.4. Let P ⊂ Rd be a set of n points in general position. The goal is to compute the ball b of largest

radius such that:

(I) each vertex of the k-top level Tk(P?) lies below the bottom branch of b?, and

(II) each vertex of the k-bottom level Bk(P?) lies above the top branch of b?.
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Lemma 5.13. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The center ball can be

computed in Od(nd−1 log n) expected time.

Proof: As usual, we use Lemma 5.1 to solve the dual problem (this problem is LP-type with constant

combinatorial dimension, where the constant depends on d). The input consists of a simplex ∆. A given

input can be decomposed using cuttings, as in the algorithms for Theorem 5.1 and Theorem 5.2.

We sketch the decision procedure. Let H = P? ∩ ∆. Assume that we also know the number of hyperplanes

lying below and above ∆. We are also given a candidate ball b. The algorithm computes the zone Z(∂∆, H)

and computes the level of each vertex of Z(∂∆, H) inside ∆. If we find a vertex of either the k-top or

k-bottom level which also lies inside b?, we report the violated constraint. Otherwise, if we find a vertex

of the k-top level lying above the top branch of b? or a vertex of the k-bottom level lying below the bottom

branch of b?, then the solution b is also deemed infeasible. This decision procedure can be implemented in

Od(|H|d−1 log |H|) expected time. QED.

Improved algorithm

Lemma 5.14. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The center ball can be

computed in Õd

(
kd−1(1 + (n/k)bd/2c)) expected time.

Proof: The same argument for Lemma 5.12 applies here, using Lemma 5.13 as a black-box to solve the

subproblems generated by the k-shallow cutting of the (≤ k)-top level and (≤ k)-bottom level. QED.

5.6 COMPUTING THE K-BALL

Lemma 5.15. Let P be a set of n points in Rd in general position, and let k be a parameter. For a set X ⊆ Rd,

let conv(X) denote the convex-hull of X. Let C(P, k) =
{

conv(Q) | Q ∈ (P
k)
}

. For d ≥ 4, one can compute the

minimum radius ball intersecting all of the sets of C(P, k) in Od(nbd/2ck2d) expected time. For d ∈ [2, 3], the expected

running time is O(nk2d log k + n log n).

Proof: Naively, there are (n
k) sets that one has to consider. However, consider an optimal solution (i.e., a ball

b in Rd) which is tangent to d + 1 sets of C(P, k). Fix a subset Q ⊆ P of size k such that conv(Q) is tangent to

b. Let h be the common tangent hyperplane to b and conv(Q), and let h+ be its closed halfspace that does

not contain the interior of b. We have that Q ⊆ h+ ∩ P. Under general position assumptions, if |h+ ∩ P|
contains more than k + d points, then there is a subset R ⊆ P of k points that is fully contained in the interior

of h+. But then conv(R) does not intersect b, contradicting feasibility.

This implies that all the constraints that can participate in defining the optimal solution are subsets of

k points of a set h+ ∩ P, where h+ ∩ P is of size at most k + d. As such, let H denote the collection of all

halfspaces containing at most k + d points of P. It is known that |H| = Od(nbd/2ckdd/2e) [47]. Furthermore,
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z

Figure 5.7: A disk containing all vertices of A(L) lying within crossing distance at most three from z.

the collection of halfspaces can be computed in O(|H|) expected time for d ≥ 4 [123] (for d ∈ [2, 3], H can be

constructed in time O(|H|+ n log n) [36, 60]).

Finally, each halfspace h+ ∈ H induces (|h
+∩P|

k ) ≤ (k+d
k ) = O(kd) constraints. This implies there are

at most Od(nbd/2ckd+dd/2e) constraints of interest. Compute this set of constraints explicitly and for each

constraint consisting of k points, compute their convex hull in Od(kbd/2c + k log k) time [44]. Finally, solve

the resulting LP-type problem in time proportional to the number of constraints [78, 141]. QED.

5.7 SMALLEST DISK ENCLOSING ALL VERTICES WITH CROSSING DISTANCE ≤ K

Let L be a set of lines in the plane. For two points p, z ∈ R2, the crossing distance dL(p, z) is the number of

lines of L intersecting the segment pz.

Given a point z ∈ R2 not lying on any line of L, and a parameter k, let

Sk(z) = {p ∈ V(A(L)) | dL(p, z) ≤ k}

be the set of vertices of A(L) with crossing distance at most k from z. The goal is to compute the smallest

disk enclosing all points of Sk(z), see Figure 5.7.

When the constraints (points) are explicitly given, this problem is LP-type with constant combinatorial

dimension. We now apply Lemma 5.1 to obtain an efficient algorithm for this problem.

The decision procedure The input is a simplex ∆, the set of lines L′ ⊆ L intersecting ∆, and a number u

which is the number of lines of L separating ∆ and z (specifically, a line ` separates ∆ and z if they lie on

opposite sides of `). Given a candidate disk D, the goal is to determine if there is a vertex of A(L′) which

lines outside D and has crossing distance at most k from z.

To this end, compute the zone Z(∂∆, L′). The algorithm chooses a vertex v of Z(∂∆, L′) inside ∆ and

computes dL(v, z) = dL′(v, z) + u. Next, walk around the set of vertices in Z(∂∆, L′) ∩ ∆ and compute the

crossing values using previously computed crossing values. If at any time a vertex of crossing value at most
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k which is outside D is encountered, report that D is an invalid solution.

The running time of the decision procedure is dominated by computing the zone Z(∂∆, L′), which can be

achieved in O(|L′| log |L′|) time by Lemma 5.2.

Constructing subproblems Given ∆ and the lines L′ ⊆ L intersecting ∆, we compute a (1/c)-cutting of L′

and clip this cutting inside ∆. For each cell ∆i in the new cutting, we compute the lines of L′ intersecting ∆i

and the number of lines separating ∆i from z. By choosing c sufficiently large to meet the requirements of

Lemma 5.1, the subproblems can be constructed in at most O(|L′| log |L′|) time.

Lemma 5.16. Let L be a set of n lines in the plane and let z ∈ R2 be a point not lying on any point of L. In O(n log n)

expected time, one can compute the smallest disk enclosing all vertices of A(L) within crossing distance at most k from

z.
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Part III

Geometric separation
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6 Separating points by lines

“
In the fields of observation chance favours only the prepared mind.

— Louis Pasteur

For a set P of n points in Rd, a set L of hyperplanes separates P, if for any pair of points of p, q ∈ P, there

is a hyperplane in L that intersects the interior of the segment pq (which also does not contain p or q). In

R2, L is a set of lines. The separability of P, denoted by Sn = sep(P), is the size of the smallest set of lines

that separates P. The separability of a point set captures how grid-like the point set is. In particular, the

separability of the
√

n×√n grid is 2
√

n− 2, while for n points in convex position the separability is dn/2e
(and this is the worst case assuming general position).

In this chapter, we investigate the separability of a point set. For a collection of n points P chosen uniformly

at random from the unit square, where Sn = sep(P) is now a random variable, we prove that with high

probability Sn = O(n2/3) and Sn = Ω(n2/3 log log n/ log n). This bound also extends to higher dimensions.

When P ⊂ Rd, we show that Sn = Ω(n2/(d+1) log log n/ log n) with high probability. We also give an

efficient randomized approximation algorithm for computing the minimum number of separating lines in

the plane. For an input set P ⊂ R2 of size n with Sn = sep(P), the algorithm returns a collection of lines

separating P of size O(Sn log Sn) and runs in expected time O(n2/3S5/3
n logO(1) n).

6.1 BACKGROUND

6.1.1 Grid versus random points

There is a striking similarity between the behavior of random point sets and uniform grid point sets. For

example, the convex hull of a set of n random points inside a triangle has O(log n) vertices in expectation,

and the same bound holds for the convex hull of the
√

n×√n grid points when clipped to a triangle. There

are many other examples of this surprising similarity in behavior (see [74] and references therein). Another

striking example of this similarity is in the number of layers of the convex hull—it is O(n2/3) for n random

points [53], and the same bound holds for a grid of n points [77].
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6.1.2 Previous work

Freimer et al. [68] showed that computing the separability of a given point set is NP-complete, and studied

an extension of the problem to polygons in the plane. Nandy et al. [127] studied the problem of separating

segments. Călinescu et al. [29] gave a two approximation when restricting the problem to separation via

axis-parallel lines. There has also been work on the bichromatic version of the problem: given a collection of

red points and blue points, determine the minimum number of lines needed to separate all red-blue pairs

(i.e., so that each cell in the arrangement of lines is monochromatic). This problem is known to be W[1]-hard

when the lines have arbitrary slope [25], but it is FPT in the solution size when the lines are restricted to be

axis-parallel [100]. Other work on this and related problems includes [54, 64].

6.1.3 Motivation

Separating and breaking point sets, usually into clusters, is a fundamental task in computer science,

needed for divide and conquer algorithms. It is thus natural to ask what can be done if restricted to lines,

and if one can do the partition in a global fashion (i.e., if the partition is done locally only to the current

subproblem, this results in a binary space partition (BSP)). Specifically, we have the following connections:

(A) Geometric hitting set. The separability problem reduces to a geometric hitting set problem. In recent

years there was a lot of work on speeding up approximation algorithms for such problems, and it is a

natural question to ask what can be done in this specific case. See [1, 4] and references therein.

(B) Polynomial partition. For divide and conquer algorithms for lines, the classical tool to use is cuttings

[42], and for points there are partitions [110]. More recently, the polynomial ham-sandwich theorem

was used to partition point sets—see [3] and references therein for some recent work. This yields

partitions that have stronger properties than the partitions of Matoušek [110] in some cases, but are

(in many cases) algorithmically less convenient to use. It is thus natural to ask what else can be done

when only using hyperplanes (or lines in R2).

(C) Extracting features. Recently, there was increased interest in autoencoders in machine learning—here, one

is interested in finding a representation of the data of a set of features, where the number of features is

significantly smaller than the ambient dimension, see [89]. Thus, the separability problem can be inter-

preted as finding a minimum number of linear features, such that all data points are distinguishable.

The problem is usually of interest in higher dimensions, but even in constant dimension it is already

challenging.
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6.2 RESULTS

6.2.1 Low separability implies partitions

In Section 6.3 we define the problem formally, and show how low separability implies partitions (see

Definition 6.4) in two and three dimensions with almost optimal parameters. Specifically, if a point set P

in Rd for d ∈ {2, 3} has separability O(n1/d), then for any r > 0, P can be partitioned into O(r) sets, where

each set is of size ≤ n/r. Furthermore, for each set in the partition we can find a simplex that contains (at

least) the points in the set. Lemma 6.2 shows that for d = 2, any line intersects roughly O(
√

r) triangles

containing these point sets. In three dimensions, the guarantee is that any plane intersects (roughly) O(r2/3)

simplices that contains these sets (Lemma 6.3). Surprisingly, in the three dimensional case, any line intersects

(roughly) O(r1/3) such simplices, and it is not known how to construct partitions in three dimensions that

have this property in the general case (when using only planes—the polynomial method yields partitions

that have this property).

6.2.2 Separability of a random point set

Let P be a set of n points picked uniformly at random from the unit square [0, 1]2. In Section 6.4 we study

the random variable Sn = sep(P). An initial guess might be that E[Sn] = Θ(
√

n) since random points in the

unit square may look like grid points. This is not the situation here— surprisingly, in Theorem 6.3 we show

that Sn = O(n2/3), and Sn = Ω(n2/3 log log n/ log n) (both of these bounds hold with high probability). For

d ≥ 2, we prove that E[Sn,d] = O(n2/(d+1)) and Sn,d = Ω(n2/(d+1) log log n/ log n), with high probability,

where the Ω and O notations hide constants that depend polynomially on d. See Corollary 6.3.

What is going on? Consider the closest pair of points in P—the distance between this pair of points is in

expectation roughly 1/n. Indeed, there are (n
2) pairs of points, and the probability of a specific pair of them to

be in distance ≤ 1/n from each other is π/n2 (ignoring boring and minor boundary issues).1 By linearity of

expectation, the expected number of pairs to be in distance≤ 1/n from each other is (n
2)π/n2 ≥ 1. Of course,

the closest pair distance in the grid
{
(i/
√

n, j/
√

n) | 1 ≤ i, j ≤ √n
}

is 1/
√

n. Thus there is a dichotomy

between a random collection of points and points from a grid.

It turns out that the situation is similar in separating random points by lines—there are, in expectation,

roughly n2/3 pairs of points in P that are in distance ≤ 1/n2/3 from each other. Namely, there are many

pairs of close points in P, and a line can separate only few of these pairs (this of course requires a proof).

Thus, implying the lower bound. The upper bound follows readily by using a grid with cells of side length

1/n2/3, and then separating every bad (i.e., short) pair on its own.

1To see this, fix a point p ∈ P. The probability that another point q ∈ P is at distance ≤ 1/n from p is equal to the probability that q
falls in the disk d of radius 1/n centered in p. It follows that the event occurs with probability equal to area(d) = π/n2.
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What is not going on It is natural to think that maybe there is a convex subset of P of size Θ(n2/3). Since

separating k points in convex position requires dk/2e lines, this would readily imply the lower bound.

However it is known that for n random points, the size of the largest subset of points in convex position is

Θ(n1/3) with high probability [8].

Similarly, one might try to blame the number of convex layers, which is indeed Θ(n2/3) for random points

[53]. The similarity in the bounds seems to be a coincidence, since it is easy to construct examples of n points

with Ω(n) convex layers that can be separated with O(
√

n) lines. See Figure 6.1.

6.2.3 A fast algorithm for approximating the separability

For a given set P of n points in the plane, in Section 6.5 we present an output-sensitive reweighting

algorithm for approximating the separability, with running time that depends on the size of the optimal

solution. The improved running time follows by implicitly storing the set of ≈ n2 candidate separating

lines the solution can use. This requires using duality (see Definition 5.2p64 and [78, Chapter 25]) and range

searching data structures to implicitly maintain the set of separating lines (and their weights). For a given

set of n points in the plane, the resulting algorithm computes a separating set of size O(σ log σ), in time

O
(
n2/3σ5/3 logO(1) n

)
, where σ is the separability of the given point set, see Theorem 6.4. Even in the worst

case scenario when σ = Θ(n), the running time is Õ(n7/3) (where Õ hides polylogarithmic factors) which is

a significant speedup over the “naive” Õ(n3) time algorithm.

6.3 PROBLEM DEFINITION AND AN APPLICATION

Definition 6.1. A set of n points P in the plane is in general position if no three of them are on a common line.

Definition 6.2. A set of lines L separates a set of points P, if for every pair p, q ∈ P, p and q are on different

sides of some line ` ∈ L.

Definition 6.3. For a set P of n points in the plane, its separability, denoted by sep(P), is the size of the

smallest set of lines that separates P.

Remark 6.1. (i) Assuming no three points are colinear, one might relax the definition, and allow points to be

on the separating lines. Given such a separating set of lines L of size m, one can generate a set of lines of size

at most 3m that properly separates all the pairs of points. Indeed, for each line `, replace it by two lines that

are parallel copies close to it. In addition, add an arbitrary line that properly separates the at most two points

that might be on ` (by the general position assumption, no line can contain three points of P). (ii) For a point

p ∈ P and a separating set of lines L, there is a unique facet of the arrangement A(L) that the only point of P

it contains is p. Since an arrangement of m hyperplanes in Rd has O(md) faces of all dimensions2, it follows

2The constant depends polynomially on d.
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(A) (B) (C)

(D)

Figure 6.1: An example of a point set with 3n points and n convex layers, that can be separated with 6
√

n
lines: (A) Start with a

√
n×√n grid. (B) Rotate the grid slightly. (C) Scale it linearly down in the y direction,

so that the resulting point set almost lies on a line. Note that the resulting point set can still be separated by
2
√

n lines. (D) Take three rotated copies of the sets from (C), placing them along three rays emanating from
a common point, with 120◦ degrees between the rays. Clearly, the resulting point set has 3n points, it can be
separated using 6

√
n lines, and has n convex layers.
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that sep(P) = Ω(n1/d). (iii) For the grid point set P ≡ n1/d × · · · × n1/d we have that the separability is

≤ dn1/d—indeed, use the natural axis-parallel hyperplanes separating layers of the grid. (iv) Consider a

set P of n points spread on a strictly convex curve γ in Rd (i.e., γ is a convex curve that lies in some two

dimensional plane). Any hyperplane, that does not contain γ, intersects γ in two points. It follows, that to

separate the n points, we need n− 1 break points along the curve. Hence, sep(P) ≥ (n− 1)/2 in this case.

An upper bound The following is an easy consequence of the results of Steiger and Zhao [147] (and is

probably implied by earlier work).

Corollary 6.1. Let Q, R be two point sets in the plane that are separated by a line, and furthermore, there are no three

colinear points in Q ∪ R. Then, for any choice of integers x, y, such that 1 ≤ x < |Q|, 1 ≤ y < |R|, there exists a line

` such that:

(a) ` does not contain any point of Q ∪ R,

(b) ` splits Q into two sets of size x and |Q| − x, respectively, and

(c) ` splits R into two sets of size y and |R| − y, respectively.

Lemma 6.1. Let P be a set of points in Rd so that no three of them are on a common line. Then, sep(P) ≤ dn/2e.

Proof: If d > 2, we project P into a randomly rotated two dimensional plane. Almost surely no three points

in the projected point sets are colinear. In particular, a partition of the projected points by m lines can be

lifted back, in the natural way, to a set of m hyperplanes separating the point set. Thus, from this point on,

we assume the points of P are in the plane.

The splitting algorithm works as follows. Split P into two sets PL and PR of sizes dn/2e and bn/2c,
respectively, by a vertical line. In the ith iteration of the algorithm, if |PR| ≥ 3, then by Corollary 6.1, there

exists a line `i that splits PL and PR each into two sets, such that PR (resp. PL) gets split into one set with two

points, and another set with |PR| − 2 (resp. |PL| − 2) points. We remove these four points from PR and PL,

and split these two pairs of points by another line `′i.

Note, that this algorithm preserves the invariant that |PL| ≥ |PR| (and these sizes differ by at most one). If

after the last iteration we are left with PL ad PR having sizes 3 and 2 respectively, then we split the set with

three elements into a set with 2 and a single element, and then split the two pairs by a single line. The case

that PL ad PR are both size 2 can be handled by a single splitting line, as is the case that PL has two points,

and PR is a singleton.

The number of cutting lines used is dn/2e as an easy case analysis based on the value of n mod 4

shows. QED.

6.3.1 Application: Partition via separability in two and three dimensions

Definition 6.4. For a set P of n points in Rd, and a parameter r > 0, an r-partition [110] is a partition of P

into t = O(r) disjoint sets P1, . . . , Pt, with associated simplices ∆1, . . . , ∆t, such that:
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(i) ∀i: Pi ⊆ ∆i,

(ii) ∀i: |Pi| ≤ n/r, and

(iii) any hyperplane h intersects at most f (r) = O(r1−1/d) simplices of ∆1, . . . , ∆t.

It is not hard to see that such a partition exists for the grid point set. It is quite surprising that such a

partition exists in the general case. The construction is due to Matoušek [110], and it is somewhat involved.

Here, we show that if a point set has low separability, then one can easily construct a partition.

Lemma 6.2. Let P be a set of n points in the plane with sep(P) = O(
√

n) and r > 0 an integer parameter. One can

compute a triangulation of the plane with O(r log2 r) triangles, such that each triangle contains ≤ n/r points of P,

and any line intersects at most O(
√

r log2 r) triangles.

Proof: Let L be a set of lines that separates P and realizes sep(P). Let m = sep(P) = |L|. Consider a random

sample S of size O(ρ log ρ) from L, where ρ = α
√

r and α is a sufficiently large constant.

Consider a face f of A(S)—it is a convex polygon with ρ′ = O(ρ log ρ) sides. We triangulate it by

connecting consecutive even vertices (i.e., every other vertex as we travel along the boundary of f ), and

repeat this process until the face is fully triangulated. It is easy to verify that any line can intersect at most

O(log ρ′) = O(log ρ) triangles in this triangulation of the face. Repeating this triangulation for all faces of

A(L) results in a triangulation of the plane. Let T be the resulting set of triangles. Clearly, any line intersects

at most O(ρ log2 ρ) triangles of T.

The ε-net theorem (Theorem 4.1p44, [88]) states that for a sample S ⊆ L of size O(ρ log ρ), any triangle

4 that intersects more than m/ρ lines of L must also intersect at least one line of S. Furthermore this

property holds for all ranges with at least some constant probability. Since all triangles of T were ultimately

constructed from the set S, it follows from the ε-net theorem that any triangle 4 of T intersects at most

m/ρ lines of L in its interior. By assumption, there is a constant c′′ such that m ≤ c′′
√

n. Therefore the

arrangement of L restricted to4 can have at most c′(m/ρ)2 ≤ c′
(
c′′
√

n/α
√

r
)2 ≤ n/r faces (including edges

on the boundary of4), for some constant c′, and for a sufficiently large constant α. This also bounds the

number of points of P in4, thus establishing the claim. QED.

Lemma 6.3. Let P be a set of n points in R3 with sep(P) = O(n1/3) and r > 0 an integer parameter. One can

compute a triangulation with O(r log2 r) simplices, such that each simplex contains ≤ n/r points of P, any plane

intersects at most O(r2/3 log2 r) simplices, and any line intersects at most O(r1/3 log2 r) simplices.

Proof: We follow the proof of Lemma 6.2. Let L be a set of planes that separates P of size m = O(n1/3). Let S

be a random sample from L of size O(ρ log ρ), where ρ = αr1/3, where α is a sufficiently large constant. For

a face f of A(S), which is a convex polytope (or convex polyhedra, if it is unbounded), we decompose it into

simplices using the Dobkin-Kirkpatrick hierarchy [55]. If the face has t vertices, the resulting decomposition

has O(t) simplices, and furthermore, any line intersects at most O(log t) such simplices. Let T be the

resulting set of simplices when applying this decomposition for all the faces of A(S).
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Figure 6.2: An illustration of the proof of Lemma 6.5.

As before, by the ε-net theorem (Theorem 4.1p44), a simplex4 ∈ T intersects at most m/ρ planes of L. For

this reason, the arrangement of A(L) when restricted to4, can have at most c((m/ρ)3) ≤ n/r facets, which

in turn bounds the number of points of P inside such a simplex by n/r.

Any line intersects |S| − 1 faces of S, and as such at most O(|S| log ρ) = O(r1/3 log2 r) simplices of T. For

any plane h, the total number of vertices that belong to faces of A(S) that intersects h is O(|S|2) by the zone

theorem [144]. Since a face is decomposed into a number of simplices that is proportional to its complexity,

it follows that h intersects at most O(r2/3 log2 r) simplices. QED.

6.4 SEPARATING RANDOM POINTS BY LINES

Here we consider the separability of a set P of n points picked uniformly, randomly and independently in

the unit square, and the random variable Sn = sep(P), which is the separability of P.

6.4.1 The upper bound

Let G be the uniform grid that partitions the unit square into N × N cells, where N = n2/3. This grid is

defined by 2(N− 1) lines, and the area of each grid cell is p = 1/N2 = (1/n2/3)2 = 1/n4/3. A grid collision

is when two points p, q ∈ P belong to the same cell of G, and in such a case p and q collide.

Lemma 6.4. Let Z be the number of pairs of points of P that collide in the grid G (i.e., Z is a random variable). Then

for n sufficiently large, we have n2/3/3 ≤ E[Z] ≤ n2/3/2.

Proof: Let P = {p1, . . . , pn}, where the exact location of each point in this set is yet to be determined. The

probability for two points pi and pj to collide, that is to fall into the same cell in the grid, is p = 1/N2—indeed,

first throw in the point pi, and the desired probability is the probability of pj to fall into the cell that contains

xi. By linearity of expectation, the expected number of colliding pairs is E[Z] = (n
2)p ≤ n2/(2n4/3) = n2/3/2.

For the lower bound, observe that E[Z] = (n
2)p =

n(n− 1)
2N2 ≥ n2

3n4/3 =
n2/3

3
, for n ≥ 3. QED.

Lemma 6.5. E[Sn] = O(n2/3).
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Proof: Let L be the set of 2(n2/3− 1) separating lines used in creating G. By Lemma 6.4, the expected number

of pairs of points of P colliding is O(n2/3). For each such colliding pair, we add to L a line that separates this

pair (thus |L| is a random variable). At the end of this process all points of P are separated, see Figure 6.2.

As claimed, we have E[Sn] ≤ E[|L|] = O(n2/3 + E[Z]) = O(n2/3). QED.

6.4.2 A detour to balls into bins

The problem at hand is related to the problem of balls and bins. Here, given n balls, one throws them into

m bins, where m ≥ n.

A ball that falls into a bin with i or more balls is i-heavy. Let B≥i be the number of i-heavy balls. It turns

out that a strong concentration on B≥i follows readily from Talagrand’s inequality. While this is probably

already known, we were unable to find it in the literature, and we provide a self contained proof here for the

sake of completeness.

The expectation of B≥i

Lemma 6.6. For i > 1, consider throwing n balls into m bins, where m ≥ 3n. Then,

e−2Fi ≤ E[B≥i] ≤ 6ei−1Fi, where Fi = n
( n

im

)i−1
,

and B≥i is the number of i-heavy balls. In addition, the expected number of pairs of i-heavy balls that are colliding,

denoted by βi, is βi ≤ cin(n/m)i−1, where ci = O(i(e/i)i−1).

Proof: Let p = 1/m. A specific ball falls into a bin with exactly i balls if there are i− 1 balls (of the remaining

n− 1 balls) that fall into the same bin. Hence the probability for that is γi = pi−1(1− p)n−i(n−1
i−1). We have

that a specific ball is i-heavy with probability

α =
n

∑
j=i

γj =
n−1

∑
j=i−1

(
n− 1

j

)
pj(1− p)n−j−1 ≤

n−1

∑
j=i−1

(
e(n− 1)

jm

)j
≤ (n/m)i−1

n−1

∑
j=i−1

(
e
j

)j

≤ (n/m)i−12.1
(

e
i− 1

)i−1
≤ (n/m)i−12.1e

( e
i

)i−1
≤ 6ei−1

( n

im

)i−1
,

as (n/i)i ≤ (n
i ) ≤ (en/i)i, i > 1, and the summation behaves like a geometric series dominated by its first

term. Since (1− p)n−j−1 ≥ (1− 1/m)m−1 ≥ 1/e, we have

α ≥ 1
e

n−1

∑
j=i−1

(
n− 1

jm

)j
≥ 1

e

(
n− 1

n
· n

(i− 1)m

)i−1
≥ 1

e2

( n

im

)i−1
.

We conclude that E[B≥i] = nα = Θ(n(n/m)i−1).
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If a ball is in a bin with exactly j balls, for j ≥ i, then it collides directly with j − 1 other i-heavy

balls. Thus, the expected number of collisions that a specific ball has with i-heavy balls is in expectation

∑n
j=i(j− 1)γj = ∑n−1

j=i−1 jγj+1. Summing over all balls, and arguing as above, we have that the expected

overall number of such collisions is

βi ≤ n
n−1

∑
j=i−1

jγj+1 = n
n

∑
j=i−1

j
(

n− 1
j

)
pj(1− p)n−j−1 = O

(
ni
( en

im

)i−1)

(note, that this counts every collision twice). QED.

Concentration of B≥i Let f (x) be a real-valued function over some product probability space Ω = Ω1 ×
· · · ×Ωn. The function f is r-certifiable, if for every x ∈ Ω, there exists a set of indices J(x) ⊆ {1, . . . , n},
such that:

(A) |J(x)| ≤ r f (x), and

(B) if y ∈ Ω agrees with x on the coordinates in J(x), then f (y) ≥ f (x).

The function f is c-Lipschitz if for two values x, y ∈ Ω that agree on all coordinates except one, we have that

| f (x)− f (y)| ≤ c. For a real valued random variable f , its median, denoted by ν( f ), is the infimum value ν,

such that Pr[ f < ν] ≤ 1/2 and Pr[ f > ν] ≤ 1/2.

The version of Talagrand’s inequality we need is the following.

Theorem 6.1 ([56, Theorem 11.3]). Let f : Ω→ R be a c-Lipschitz and r-certifiable function, for some constants r

and c, with its median being ν = ν( f ). Then, for all t > 0, we have Pr
[
| f − ν| > t

]
≤ 4 exp

(
−t2

4c2r(ν+t)

)
.

Lemma 6.7. Consider throwing n balls into m bins, where m ≥ 3n. Furthermore, let i be a small constant integer,

B≥i be the number of balls that are contained in bins with i or more balls, and let νi = ν(B≥i). In addition, assume

that νi ≥ 16i2c ln n, where c is some arbitrary constant. Then Pr
[
|B≥i − νi| ≥ 4i

√
cνi ln n

]
≤ 1/nc. Furthermore,

for some constant c′, we have |νi −E[B≥i]| ≤ c′i
√

νi, and thus

Pr
[
|B≥i −E[B≥i]| ≥ c′i

√
νi + 4i

√
cνi ln n

]
≤ 1/nc.

Proof: Observe that B≥i is 1-certifiable—indeed, the certificate is the list of indices of all the balls that are

contained in bins with i or more balls. The variable B≥i is also i-Lipschitz. Changing the location of a single

ball, can make one bin that contains i balls, into a bin that contains i − 1 balls, thus decreasing B≥i by i.

Applying Theorem 6.1 (Talagrand’s inequality), with t = 4i
√

cνi ln n we have

Pr
[∣∣B≥i − νi

∣∣ > t
]
≤ 4 exp

(
− t2

4i2(νi + t)

)
≤ 1

nc ,

assuming t ≤ νi.

The estimate on the distance of νi and E[B≥i] follows by estimating the expectation, by breaking the real
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line into intervals of length O(i
√

νi), and using the exponential decay of the probability in each such interval

as we get away from νi, as implied by the above. Formally, we have that

|νi −E[B≥i]| = |E[νi − B≥i]| ≤ E[|νi − B≥i|]

≤ ∑
k≥0

(k + 1)i
√

νi · Pr[|B≥i − νi| > ki
√

νi].

Now applying Theorem 6.1 and using the assumption νi is sufficiently large,

|νi −E[B≥i]| ≤ ∑
k≥0

(k + 1)i
√

νi · Pr[|B≥i − νi| > ki
√

νi]

≤ ∑
k≥0

(k + 1)i
√

νi · 4 exp
(
− k2i2νi

4i2(νi + ki
√

νi)

)
≤ ∑

k≥0
(k + 1)i

√
νi · 4 exp

(
−k2/4(1 + k)

)
= O(i

√
νi).

The final inequality is readily implied by combining the two earlier statements. QED.

In the following, we need Chernoff’s inequality, which we state explicitly for completeness [56].

Theorem 6.2. Let X1, . . . , Xn be n independent random variables where Pr
[
Xi = 1

]
= pi, and Pr

[
Xi = 0

]
= 1− pi.

And let X = ∑b
i=1 Xi, and µ = E

[
X
]
= ∑i pi. For any δ ≥ 0, we have

Pr
[

X > (1 + δ)µ
]
<


exp

(
−µδ2/4

)
2e− 1 ≥ δ ≥ 0

2−µ(1+δ) δ ≥ 2e− 1

exp
(
−(µδ/2) ln δ

)
δ ≥ e2.

Similarly, we have Pr[X < (1− δ)µ] < exp
(
−µδ2/2

)
.

Not too many shared birthdays The birthday paradox states that if one throws n balls (i.e., birthday dates of

n people) into m = Θ(n2) bins (i.e., days of the year), then the number of bins containing two or more balls is

non-zero with constant probability. The following proves that the number of such bins can not be too large.

Lemma 6.8. Consider throwing n balls into m = cn2 bins, where c is some constant. Then, with high probability, the

total number of bins that contain two or more balls is O(log n/ log log n).

Proof: Partition the set B of n balls into two sets X and Y, each of size n/2. Let Y be the number of bins that

contains balls of X—clearly, Y ≤ n/2. As such, the probability of a ball of Y to fall into a bin with a ball of X,

is α = Y/m ≤ (n/2)/m = 1/(2cn). Now the expected number of bins that contains balls from both X and

Y is |Y| α = (n/2)α ≤ 1/4c. By Chernoff’s inequality, this quantity is smaller than T = O(log n/ log log n),

with high probability3.
3By Theorem 6.2 with µ = 1/4c, and δ = c1 log n/ log log n, where c1 is a sufficiently large constant.
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This approach allows us to count the number of bins that contain balls from both X and Y. However, to

count the number of bins that contain two or more balls, we need to count those bins which may only contain

balls from X (or from Y). To overcome this, we repeat the above experiment, generating new partitions

(X1, Y1), . . . , (XM, YM), as above, such that any pair p, q ∈ B appears in a constant fraction of these partitions

on different sides. This is easy to do—match the balls of B in pairs. To generate the ith partition, the

algorithms goes over the pairs in the matching (p, q), and puts p in Xi and q in Yi with probability half, and

otherwise it assigns p to Yi and q to Xi. Observe that |Xi| = |Yi| = n/2.

Repeating this M = c2 log n times, guarantees with high probability, that any two balls p, q ∈ B appear in

opposing sides of at least one of these partitions (two points that are an edge in the matching are in different

sides in all partitions). Furthermore, by Chernoff’s inequality, each pair appears in at least γ = Ω(log n)

pairs, with high probability4.

Consequently, there are at most β = O(M log n/ log log n) heavy bins with balls that belong to different

sides of some partition. Each such heavy bin gets counted at least γ times, thus implying that the number of

heavy bins is at most β/γ = O(log n/ log log n). QED.

The following is not required for the proof of the main result, and we include it since it might be of

independent interest. Note that the next lemma bounds the number of balls colliding, while Lemma 6.8

bounded the number of bins.

Lemma 6.9. Consider throwing n balls into m = cn2 bins, where c is some constant. Then, with high probability, the

total number of colliding pairs of balls is O(log n/ log log n).

Proof: Let i be a sufficiently large constant (in particular i ≥ e/c). By Lemma 6.6, the expected number of

collisions of pairs of i-heavy balls is βi = O
(

ni
( en

im
)i−1)

= O
(

ni/ni−1) = O
(
1/ni−3). By Markov’s inequality,

the probability that there are any collisions involving i-heavy balls is at most βi. As for collisions of pairs that

are not i-heavy, by Lemma 6.8, with high probability there are at most O(log n/ log log n) bins that contain

between 2 and i− 1 balls, and each such bin contributes at most (i−1
2 ) colliding pairs. We conclude, that with

high probability, the total number of collisions is O(i2 log n/ log log n) = O(log n/ log log n), as claimed.QED.

Remark 6.2. Somewhat disappointingly, the upper bound O(log n/ log log n) on the number of colliding

balls, in Lemma 6.9, is tight if the probability of success is required to be ≥ 1− 1/nτ , where τ is some

constant. To see that, consider the partition (X, Y) from the proof of Lemma 6.8. With high probability, the

number of bins containing balls of X is ≥ n/4—this follows by similar to, but easier, argument to the one

used in the proof of Lemma 6.7. As such, the probability of a ball of Y to collide with a ball of X is at least

p = 1/(4cn). Thus, the probability that exactly i such collisions happen is at least ζ = (n/2
i )pi(1− p)n/2−i ≥

4Observe that a pair p, q is separated by a partition with probability at least half. Let X be the number of partitions separating
this pair. The expected number of partitions separating this pair is µ = E[X] = M/2 = (c2/2) logn. Setting δ = 1/2, we have by
Theorem 6.2 that Pr[X ≤ (1− δ)µ] ≤ exp

(
−µδ2/2

)
≤ 1/nΩ(1), by making c2 sufficiently large. It follows that with high probability,

the pair is separated in at least γ = (1− δ)µ = (c2/4) log n partitions.

92



(
n/2

i

)i( 1
4cn

)i
= 1

(8ci)i . If we require the last quantity to be larger than 1/nτ , then we have nτ ≥ (8ci)i ⇐⇒
τ ln n ≥ i ln(8ci), which holds for i = Θ(log n/ log log n), as τ and c are constants. Namely, for the specified

value of i, we have that i collisions happen with probability ≥ ζ ≥ 1/nτ .

How many collisions are there, anyway? It is useful to think about the point set P as being generated by

throwing n = n balls into m = N2 = n4/3 bins – here every grid cell is a bin. Lemma 6.6 and Lemma 6.7

together implies the following.

Corollary 6.2. When throwing n balls into n4/3 bins, we have, with high probability, that B≥2 = Θ(n2/3) and

B≥3 = Θ(n1/3), where B≥i is the number of balls that are in bins with i or more balls.

Lemma 6.10. Let P be a set of n random point picked uniformly in the unit square. Let Z be the number of active grid

cells—namely, the number of grid cells that contains two or more points of P. We have, with high probability, that

Z = Θ(n2/3).

Proof: We interpret this as throwing n balls into n4/3 bins (a grid cell is a bin). The number of balls colliding

with exactly one other ball is B≥2 − B≥3. Therefore the number of bins containing exactly two balls is

(B≥2 − B≥3)/2. By Corollary 6.2, we have Z ≥ (B≥2 − B≥3)/2 = Θ(n2/3). QED.

A single line can not be involved in too many active cells

Lemma 6.11. Let S be a given set of 2N grid cells. A cell of S is active if it contains two or more points of P. Let

Y be the number of cells of S that are active. We have that Y = O(log n/ log log n), with high probability (i.e.,

≥ 1− 1/nΩ(1)).

Proof: For any i, let Xi be the indicator variable that is one if the ith point of P falls into a cell of S, and let

Y = ∑n
i=1 Xi. The probability of a point p ∈ P to fall into a cell of S is at most p′ = p2N = 2/N. Hence

µ = E[Y] = np′ ≤ 2n/N = 2n1/3. By Chernoff’s inequality (Theorem 6.2), we have that

Pr
[
Y ≥ 3n1/3

]
≤ Pr[Y ≥ (1 + 1/2)µ] ≤ exp

(
−µ(1/2)2

4

)
≤ exp

(
−n1/3

8

)
.

From this point on, we assume that Y ≤ 3n1/3. Thus, we are throwing at most 3n1/3 balls into 2N = 2n2/3

bins. By Lemma 6.8, with high probability, there are at most O(log n/ log log n) bins with two or more

balls. QED.

The result

Theorem 6.3. Let P be a set of n points picked uniformly and randomly from the unit square. Let Sn be the separability

of P— the minimum number of lines separating P. Then, with high probability we have Sn = Ω(n2/3 log log n/ log n)

and Sn = O(n2/3).
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Proof: We remind the reader that G is the grid partitioning the unit square into N × N cells, where N = n2/3.

For a line ` that avoids the vertices of G, consider the set of grid cells that it intersects, formally B(`) =

{∆ | ∆ ∈ G and ∆ ∩ ` 6= ∅}. Since ` intersects ≤ N − 1 horizontal and ≤ N − 1 vertical lines of the grid

inside the unit square, it follows that |B(`)| ≤ 2N − 1. Fix an arbitrary ordering of the cells of G, and add

cells according to this ordering to B(`) until this set is of size 2N. The resulting set, sgn(`) is the signature of

`.

Let L be a set of representative lines. Specifically, among all lines with the same signature, pick one of

them to be in L. It is easy to verify that |L| = O(N4) = O(n8/3).

We are now ready for the proof itself. Consider the randomly generated point set P. We consider two

points to be separated if they belong to different grid cells. It remains to separate points that collide in

the grid (i.e., belong to the same grid cell). So consider a minimal separating set of lines L. A line in L

intersects ≤ 2N cells of the grid, and by Lemma 6.11, with high probability, its signature contains at most

T = O(log n/ log log n) active grid cells. Namely, each such line can at best only separate pairs that belong

to these active cells.

However, Lemma 6.10 implies that, with high probability, the number of active grid cells is at least n2/3/c′,

where c′ is some constant. It follows that any set of lines that separates all the pairs of points that collide,

must be of size ≥ (n2/3/c′)/T, with high probability.

As for the upper bound, it follows from the argument of Lemma 6.5. The number of points that need

separation from other points (after we use the grid lines) is B≥2. However, B≥2 = Θ(n2/3) with high

probability, by Corollary 6.2. Now use three lines to separate each point from all the other points of P. This

implies the upper bound. QED.

6.4.3 Extensions

Other domains Both the lower bound and upper bound for Sn in Theorem 6.3 hold if n points are sampled

uniformly at random within any given convex region C. Indeed, John’s ellipsoid theorem [78] implies that

after appropriate scaling, there is a disk D such that D ⊆ C ⊆ 2D. In particular, we can inscribe in D a large

square S, see Figure 6.3. This square contains a constant fraction of the area of C, since

area(S) = (2/π) · area(D) = (1/2π) · area(2D) ≥ (1/8) · area(C).

By sampling n points uniformly at random from C, a Chernoff bound (Theorem 6.2) implies that with high

probability, Θ(n) points will fall inside S. This implies that we can focus on separating pairs of points which

fall inside the square S. In particular, the number of lines needed to separate all pairs of points inside C is at

least the number of lines needed to separate all pairs of points inside S. The lower bound of Theorem 6.3

follows.

As for the upper bound on Sn, the argument is similar. Given the disk 2D ⊇ C, whose area is a constant
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C

S

Figure 6.3: Inscribing a large square inside a convex body.

factor larger than the area of C, we can circumscribe a square S′ around the disk 2D. An identical argument

as above implies that the area of S′ is at most a constant factor larger than the area of C. Thus we can consider

sampling n points from this square S′, where Θ(n) of them land in C with high probability. It follows that

the number of lines needs to separate pairs of points inside C is at most the number lines needs to separate

pairs of points in S′.

Higher dimensions

Corollary 6.3. Let P be a set of n points picked uniformly and randomly from the unit cube [0, 1]d. With high proba-

bility, the minimum number of hyperplanes separating P is Ωd(n2/(d+1) log log n/ log n). Similarly, in expectation,

one can separate P using O(dn2/(d+1)) hyperplanes.

Proof: One can easily extend the two dimensional analysis to higher dimensions. We quickly sketch the

calculations without going into the low level details, which follows readily by retracing the same argumenta-

tion.

In the following f ≈ g, means that f = Θ̃(g). We now consider the unit cube [0, 1]d. As before, we

partition it into Nd grid cells, in the natural way, where the value of N is to be determined shortly. Let

G denote the resulting grid. Any hyperplane intersects at most H ≈ Nd−1 grid cells. We would like to

guarantee that that there are ≈ O(1) cells that contain two and more points, for a fixed hyperplane h. By

the birthday paradox, this means that we should have at most ≈
√

H random points falling into the H cells

associated with h, if we want a constant number of collisions. Since the probability of a point to fall into a

grid cell that h intersects is H/Nd, we get that

√
H ≈ nH/Nd =⇒ H ≈ (Nd/n)2 =⇒ Nd−1 ≈ N2d/n2 =⇒ n2 ≈ Nd+1 =⇒ N = n2/(d+1).

The overall number of grid cells that contain two or more points is

(n
2)/Nd ≈ n2/Nd = n2−2d/(d+1) = n2/(d+1).

Finally, with high probability, a hyperplane can intersects only ≈ O(1) active grid cells, which means that

the number of hyperplanes needed to separate n random points is ≈ n2/(d+1)/O(1).
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The lower bound follows by plugging in the above sketch, into the detailed analysis of the two dimensional

case.

For the upper bound: In the grid G, the volume of each grid cell is p = 1/Nd = 1/n2d/(d+1). Thus the

expected number of collisions happening inside the grid cells is E[Z] = (n
2)p ≤ n2/2n2d/(d+1) = O(n2/(d+1)).

We separate each such colliding pair by its own hyperplane. Note, that creating the grid G, requires d(N− 1)

separating hyperplanes. As such, the expected number of separating hyperplanes one needs is at most

O(dN + E[Z]) = O(dn2/(d+1)). QED.

Remark 6.3. A set of n points of the grid n1/d × · · · × n1/d in Rd requires ≤ dn1/d hyperplanes to separate

them. Therefore the gap demonstrated in two dimensions (between the grid and random points) also holds

in higher dimensions.

Allowing more points to collide Here, we change the problem—we allow groups of up to t points to not

be separated by the points.

Lemma 6.12. Let t > 1 be a fixed integer constant. Consider a set P of n random points chosen uniformly and

independently from [0, 1]2. In expectation there is a set L of O(n(t+1)/(2t+1)) lines, such that every face of A(L)

contains at most t points of L.

Proof: Let N = n(t+1)/(2t+1) and consider the set of lines forming the N × N grid. Let m = N2. Consider the

distribution of the points of P in the grid cells. Any grid cell that contains more than t points, is further split

by introducing additional lines until every cell in the resulting arrangement contains at most t points.

To bound the number of these additional fix-up lines, recall the balls and bins interpretation. By Lemma 6.6,

the number of points that falls into grid cells with t + 1 or more balls is

Θ
(

nt+1/mt
)
= Θ

(
nt+1/n2t(t+1)/(2t+1)

)
= Θ

((
n1−2t/(2t+1)

)t+1
)
= O(n(t+1)/(2t+1)).

Clearly, this also provides an upper bound on the number of fix-up lines needed. QED.

6.5 APPROXIMATING A MINIMUM SEPARATING SET OF LINES

6.5.1 Problem statement and a slow algorithm

Given a set P of n points in general position (i.e., no three points are colinear) in the plane, our goal is to

approximate the minimal set of lines L separating all the pairs of points of P.

Reduction to hitting set Given a set P as above, one can restate the problem as a hitting set problem.

Indeed, let C = {line(p, q) | p, q ∈ P} be the set of candidates, which contains all lines that pass through

every pair of points of P, where line(p, q) denotes the line passing through p and q.
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To simplify the description of the algorithm, we use an alternative definition of separation as suggested in

Remark 6.1 (A). Specifically, we modify Definition 6.2 by allowing points to lie on the separating lines. In

particular, two points p and q are additionally considered to be separated if the line separating them passes

through p or q.

For each pair of points p, q ∈ P, consider the set of all lines of C that intersect this segment pq:

Lpq = {` ∈ C | pq ∩ ` 6= ∅}.

By our modified definition, any of the lines of Lpq can be interpreted as separating the two points p and q.

Consider the set system

S = (C,R), whereR =
{

Lpq | p, q ∈ P, p 6= q
}

. (6.1)

We refer the reader to Section 4.2.1p43 for the relevant definitions on set systems and VC dimension.

Observation 6.1. Given a set L′ of m lines that separates P, there exists a subset L ⊆ C of m lines, such that L

separates P. Indeed, translate and rotate every line of L′ till it passes through two points of P. Clearly, the resulting set

of lines separates the points of P.

Lemma 6.13. The set system S defined by Eq. (6.1) has VC dimension at most 11.

Proof: The following argument is due to Kynčl [102]. The arrangement of m lines in the plane has at most

f = m(m+ 1)/2+ 1 faces. As such, there are at most ( f
2) distinct segments (as far as what lines they intersect).

If a set L of m lines is shattered by the range space, then we must have 2m ≤ ( f
2) ≤ (m(m + 1)/2 + 1)2, and

this inequality breaks for m = 12, which implies that the VC dimension is at most 11. QED.

A further improvement on the bound of the above Lemma might be possible by more involved argument

[102], but one has to be careful since the lines of L are not in general position.

It follows that one can compute a separating set by computing (approximately) a hitting set for the set

system S, using known approximation algorithms for hitting sets for spaces with bounded VC dimension

[78].

The basic approximation algorithm for hitting set for S We next describe the standard reweighting

algorithm for hitting set in our context. Such reweighting algorithms go back to the work by Chazelle and

Welzl [43]. In the context of geometric set-cover/hitting-set, Clarkson [46] was the first to suggest such an

algorithm. Clarkson’s algorithm was further formalized by Brönnimann and Goodrich [26]. See [78, Chapter

6] for more details.
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The algorithm Given S as above, let Lopt be the optimal solution, and let σ = sep(P) =
∣∣Lopt

∣∣ denote the

separability of P. The algorithm will perform an exponential search for the value of σ. Let k be the current

guess for the value of σ (at the beginning of the algorithm k = 1).

Initially, each line in ` ∈ C is assigned weight ω(`) = 1. For a subset L ⊆ C, its weight is ω(L) = ∑`∈L ω(`).

In each iteration, the algorithm samples a set of lines S ⊆ C of size O(ε−1 log ε−1) (where ε = 1/4k and k is

the current guess for σ) picked according to their weights. By the ε-net theorem (Theorem 4.1p44), S is an

ε-net with probability at least 1− εc = 1− 1/(4k)c (for some sufficiently large constant c). The algorithm

next checks if the sample S separates P, and if so, it returns the sample as the desired separating set.

To this end, the algorithm builds the arrangement A(S) and preprocesses it for point-location queries.

Next, it locates all of the faces in this arrangement that contain points of P. If there is a pair of points p, q ∈ P

that are in the same face, then this pair is not separated by S. If the weight of the lines Lpq is at most an ε

fraction of the total weight of C (formally, ω
(

Lpq
)
≤ εω(C)), the algorithm doubles the weight of all the lines

in Lpq. Otherwise, this iteration failed, and the algorithm continues to the next iteration.

If after 16k log n iterations the algorithm did not output a solution, then the guess k for σ is too small. In

which case, the algorithm doubles the value of k and starts from scratch.

Lemma 6.14. Given a set P of n points in general position, one can return a set of separating lines S of size O(σ log σ)

in expected time O
(

n2σ log n + σ3 log n log2 σ
)

, where σ is the separability of P.

Proof: For the sake of completeness, we sketch the proof of correctness of the algorithm. Assume that the

guess k is such that σ ≤ k ≤ 2σ.

Initially, the total weight of the C is (n
2). In each successful iteration, the total weight increases by a factor

of at most ε. (Assume for the time being that all iterations are successful.) If Wi is the total weight of the

lines of C in the end of the ith successful iteration, then Wi ≤ (1 + ε)in2. On the other hand, any successful

iteration doubles the weight of at least one the lines in the optimal hitting set Lopt. For a line ` ∈ Lopt, let h(`)

be the number of times its weight had been doubled. We have that ∑`∈Lopt h(`) ≥ i and Wi ≥ ∑`∈Lopt 2h(`).

Clearly, the right side is minimized when all the “hits” are distributed uniformly. That is, we have that

Wi ≥ ∑`∈Lopt 2bi/σc ≥ σ2i/σ−1. Consequently,

exp
(

i
2σ
− 1 + ln σ

)
≤ σ2i/σ−1 ≤Wi ≤ (1 + ε)in2 ≤

(
1 +

1
4k
)in2 ≤

(
1 +

1
4σ

)i
n2

≤ exp
(

i
4σ

+ 2 ln n
)

,

since k ≥ σ. This is equivalent to i
2σ − 1 + ln σ ≤ i

4σ + 2 ln n ⇐⇒ i
4σ ≤ 2 ln n− ln σ + 1, which holds only

for i ≤ 8σ ln n. Namely, the algorithm must stop after this number of successful iterations. Note that the

separating lines returned is a sample of size O(k log k) = O(σ log σ) that separates all the points of P.

By the ε-net theorem, every iteration is successful with probability 1− εc ≥ 1− 1/σc, where the constant c
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is sufficiently large. As such, the number of failed iterations is tiny compared to the number of successful

iterations, and we can ignore this issue.

In each iteration, the algorithm samples a set S of size r = O(ε−1 log ε−1) = O(k log k). The arrangement

A(S) is constructed in O(r2) time. We then perform n point location queries in A(S), in O(log r) =

O(log k) time per query. Thus, the running time for a fixed value of k is O
((

r2 + n log k + n2)k log n
)
=

O
((

k2 log2 k + n log k + n2
)

k log n
)

. Here, the O(n2) term is the time it takes to scan the lines of C and

update their weights. Summing this over exponentially growing values of k = 20, 21, . . ., where the final k is

at most 2σ, the total running time is bounded by the sum (where lg = log2 denotes the binary logarithm):

O

(dlg(2σ)e
∑
i=0

(
(2i)2 log2 2i + n log 2i + n2

)
2i log n

)
= O

(dlg(2σ)e
∑
i=0

i28i log n + n2 log n
dlg(2σ)e

∑
i=0

2i

)
= O

(
σ3 log n log2 σ + n2σ log n

)
. QED.

6.5.2 Faster algorithm

Challenge and the main ideas We want to get a faster algorithm than the “naive” algorithm described

above. In the above algorithm, the bottleneck is the O(n2) term in the running time, which is the result of

explicitly maintaining the set C and the weights for each line in C. Note that the number of iterations the

algorithm performs is pretty small, only O(σ log n).

The idea is to maintain the set C and the weights implicitly. To this end, consider the given set P of n points.

In the dual, the set P? corresponds to a set of n lines (see Definition 5.2p64 and [78, Chapter 25] for more

details about duality). A line ` ∈ C corresponds to an intersection point between two lines p?, q? ∈ P?—that

is, a vertex of A(P?) (and this vertex represents ` uniquely).

Now, in the ith iteration of the (inner) algorithm, it doubles the weight of the lines that are in the set Lpiqi .

In other words, the lines that intersect the segment si = piqi. In the dual, the segment si is a double-wedge

Di = s?i . The double-wedge is the region “sandwiched” between the two dual lines p?i and q?i , and its interior

are all the points in the plane that are above exactly one line of out of p?i and q?i .

At the end of the ith iteration, the dual plane is partitioned into the arrangement A(Di), where Di =

{D1, . . . , Di}. A vertex v ∈ A(P?), at the end of the ith iteration, has weight 2h(v) where h(v) is the number

of double wedges of Di that contains v.

Observe that the arrangement A(Di) has complexity O(i2), which is relatively small, and it can be

maintained efficiently. The problem is that to implement the algorithm, one needs to be able to sample

efficiently a line from C according to their weights. To this end, we need to maintain for each face of A(Di)

the number of vertices of A(P?) that it contains.

We next describe data structures for counting intersections inside a simple region, sampling a vertex from

such a region, and how to maintain such a partition of the plane under insertion of double-wedges.
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Figure 6.4: Mapping the intersections of lines with a convex polygon to intervals on the real line.

Counting and sampling intersections

Lemma 6.15. Let ψ be a convex polygon in the plane with constant number of edges, and let L be a set of m lines. The

number of vertices of A(L) that lie in ψ can be computed in O(m log m) time.

Furthermore, this algorithm constructs a data structure, using O(m log m) space, such that one can uniformly at

random pick, in O(log m) time, a vertex of A(L) that lies in ψ.

Proof: Conceptually, select a point on the boundary of ψ and cut ψ at that point. Take this (now open)

polygon and straighten it into a straight line. Finally, translate and rotate the plane, so that this straightened

line becomes parallel to the x-axis, see Figure 6.4.

Furthermore, for a line ` ∈ L that intersects ∂ψ, treat the segment s = ` ∩ ψ as a rubber band. In the end of

this straightening process, s became an interval on the x-axis. For two lines `, `′ ∈ L that have an intersection

inside ψ, this results in two intervals I, I′, such that each interval contains exactly one endpoint of the

other interval in its interior. This also holds in the other direction—two intervals that have this property

corresponds to a common intersection of the original lines inside ψ. Counting such pairs is quite easy by

sweeping the x-axis from left to right. We next describe this algorithm more formally in the original setup.

Assume that L = {`1, . . . , `m}. The algorithm computes the intersection points of the lines of L with the

boundary of ψ, and sorts them in their counterclockwise order on the boundary of ψ (starting, say, in the top

left vertex of ψ).

The resulting order is a sequence p1, . . . , pm′ , where m′ ≤ 2m, and every point pi has a label α = id(pi)

which is the index of the line `α ∈ L that defines it (i.e., pi ∈ ∂ψ ∩ `α). Next, the algorithm scans this

sequence:

• When it encounters an intersection pj such that id
(

pj
)

was not seen before, it inserts the line of pj into

a balanced binary search tree (BST), using the value of j for the ordering. This BST has the added

feature that each internal node stores the number of elements stored in its subtree.

• When the algorithm encounters a point pk such that the line defining it was already inserted into the

BST (i.e., id(pk) = id
(

pj
)

for some j < k), the algorithm reports the number of lines stored in the tree

between j and k, which corresponds to the number of lines of L that intersects the line of pk in ψ. Next,

we remove the line of pk (stored with the key value j) from the tree.
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All of these operations can be implemented in O(log m) time, so that the overall running time is O(m log m).

Observe, that every relevant intersection is counted exactly once by this process.

To get the sampling data structure, rerun the above algorithm using a BST with persistence. This

persistence costs O(log m) additional space per operation, since we use the path copying approach. This

modification does not effect the overall running time. Thus, the resulting data structure uses O(m log m)

space. Now, every line ` ∈ L, corresponds to an interval I` = [i(`), i′(`)] in the BST. Furthermore, the lines

intersecting ` in ψ, are stored in the BST (in the version just after ` was deleted) in the interval I`.

As such, every line intersecting ψ has an associated interval, with an associated weight (i.e., the number of

intersections assigned to it by the construction). To pick a random vertex, the algorithm first picks an interval

according to their weights—this corresponds to a random line `. Next, given this random line, the algorithm

picks a random element stored in the O(log m) subtrees representing the lines in I`. Since the algorithm used

path copying, it has the exact number of lines stored in each subtree, and it is straightforward to sample a

line in uniform. This second random line `′, such that ` ∩ `′ ∈ ψ is the desired random vertex. QED.

Sampling a trapezoid The algorithm maintains a collection of m trapezoids that are interior-disjoint, such

that their (disjoint) union covers the plane. Furthermore, assume that each such trapezoid ψ already has the

data structure of Lemma 6.15 built for it.

Definition 6.5. Consider a set D of double-wedges and a trapezoid ψ such that its interior is contained in a

single face of A(D). For a set of lines L, the number of vertices of A(L) in ψ is the support of ψ, and it is

denoted by #(ψ). The depth of ψ is the number of double-wedges of D that fully contain ψ in their interior.

The depth of ψ is denoted by depth(ψ). The mass of ψ is defined as mass(ψ) = #(ψ)2depth(ψ).

Lemma 6.16. Given a (dynamic) set at most m interior-disjoint trapezoids, covering the plane, each with the associated

data structure of Lemma 6.15 and their known mass, one can sample a random vertex fromA(L) in O(log m+ log m′)

time, where m′ is the maximum size of a conflict list of such a trapezoid. Furthermore, one can update this data

structure under insertion and deletion in O(log m) time.

Proof: The task at hand is to pick a vertex of A(L) uniformly at random according to these weights. To this

end, we construct a balanced binary search tree having the trapezoids as leafs—a trapezoid is stored together

with its mass. Every internal node of this tree has the total mass of the leafs in its subtree.

Now, one can traverse down the tree randomly, starting at the root, as follows. If the current node is u,

consider its two children v and v′. The algorithm picks an integer number randomly and uniformly in the

range [1, 1 + mass(v) + mass(v′)]. If this number is in the range [1, mass(v)], the algorithm continues the

traversal into v, otherwise, it continues into v′. Clearly, this traversal randomly and uniformly chooses a leaf

of the tree (according to their mass). Once the algorithm arrived to such a leaf, it uses the data structure of

Lemma 6.15 to pick a random vertex inside the associated trapezoid. QED.
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Maintaining vertex weights efficiently under insertions Our purpose here is to present an efficient data

structure that solves the following problem.

Problem 6.1. Given a set L of n lines and a parameter k, we would like to maintain a vertical decomposition

of the plane, such that each trapezoid ψ in this decomposition maintains the sampling data structure of

Lemma 6.15 for the vertices of A(L). This data structure should support insertions of up to O(k log n)

double-wedges. Here, each trapezoid maintains its support, depth, and mass, see Definition 6.5.

The basic scheme

Lemma 6.17. One can maintain a data structure for Problem 6.1, over O(k log n) insertions, with total running time

O((k3 + nk) log3 n).

Proof: Let S be a random sample of L of size K = O(k log n), where L is the set of n lines that are dual to the

original set of points. Compute the vertical decomposition of S. For each trapezoid ψ in this decomposition,

we compute the conflict list of ψ (i.e., the set of lines from L intersecting the interior of ψ). This can be done

in O(K2 + Kn) time, using standard algorithms, see [18]. Next, the algorithm computes for each trapezoid

the data structure of Lemma 6.15.

By the ε-net theorem, every vertical trapezoid that does not intersect a line of S in its interior intersects at

most εn lines of L (where ε = 1/4k). This property holds with high probability. As such, the conflict lists that

the algorithm deals with are of size O(n/k).

Let L0 = S. In the ith iteration, the ith double-wedge Di is inserted. To this end, the two lines `i, `′i bounding

the double wedge are inserted into the current vertical decomposition, splitting and merging trapezoids as

necessary. At the end of this process we have the vertical decomposition of Li = Li−1 ∪
{
`i, `′i

}
. This involves

creating O(K + i) new trapezoids, since the zone complexity of a line in A(Li−1) is O(K + i) = O(K), and

i = O(K). For each such trapezoid we rebuild the data structure of Lemma 6.15, which takes overall

O((n/k) log(n/k) · K) = O(n log2 n) time. Finally, we scan all the vertical trapezoids, and update their

depth count, if they are contained inside the inserted wedge. This takes (naively) O(K2) time.

Recall that we perform O(K) insertions in total, and therefore the overall running time of the data structure

is O
(

K
(

K2 + n log2 n
))

= O((k3 + nk) log3 n). QED.

A more efficient scheme The overall running time of Lemma 6.17 can be further improved by using

dynamic partition trees.

Lemma 6.18. One can maintain a data structure for Problem 6.1 with running time O(nk log3 n + k2 logO(1) n).

(This running time includes O(k log n) double-wedge insertions.) Furthermore, one can sample a random vertex of

A(L) according to their weight in O(log n) time.
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Proof: Partition trees are used to maintain the depth of the vertical trapezoids. This maintenance step is

the bottleneck in the scheme of Lemma 6.17, since the algorithm must scan all of the existing trapezoids to

update their depth after each insertion of a double wedge.

A partition tree is a hierarchical partition of the point set, until each leaf has a constant number of points.

Each node uses a partition (see Definition 6.4) to break its point set into subsets, and for each subset a

partition tree is constructed recursively. Performing a simplex query in a partition tree is done by starting at

the root, inspecting its children simplices. If such a simplex ∆ lies entirely within the query, the algorithm

reports the number of points inside it. Otherwise if ∆ intersects the query, the algorithm recurses on that

child node. Given a set of n points in R2, Matoušek showed that one can construct a partition tree in

O(n log n) time and return the number of points inside the simplex query in time O(
√

n logO(1) n) [110].

For our purposes, we pick a point inside a vertical trapezoid (in the current vertical decomposition)

to represent it. Overall, there are m = O(K2) = O(k2 log2 n) representatives at any given time. We next

build the data structure of Matoušek [110] to dynamically maintain this point-set under insertions and

deletions (each operation takes amortized O(log2 m) time). Updating the weight of a trapezoid corresponds

to two simplex queries, where we have to increase the depth count for the canonical sets reported by this

range-searching query. There are O(
√

m logO(1) m) = O(k logO(1) n) such canonical sets, and this is the time

to perform such an update. Thus an insertion of a double wedge with respect to this partition tree takes

O(K log2 K + k logO(1) n) time. Therefore, over the O(K) insertions, the algorithm requires O(k2 logO(1) n)

time to maintain the weights of the vertices of A(L).

Using the above, and the sampling data structure of Lemma 6.16, implies the claim. QED.

Putting everything together

Remark 6.4 (More efficient point-location). Each iteration of the algorithm needs to solve the following sub-

problem. Given a set of m lines L and n points P, compute for each point p ∈ P the face of A(L) containing

p. Agarwal et al. [2] describe an algorithm for this problem with running time O((n + m + n2/3m2/3) log n).

This subroutine can be applied in each iteration of our algorithm on the m = O(k log k) lines sampled.

Substituting the value for m in the preceding bound, we conclude the subroutine can be completed in time

O
(

n log n + k log2 n + n2/3k2/3 log2 n
)

.

Theorem 6.4. Given a set P of n points in the plane, one can compute a set of O(σ log σ) lines that separates all the

points of P, where σ is the minimal set of lines that separates P. The overall expected running time of this algorithm is

O
(

n2/3σ5/3 logO(1) n
)

.

Proof: We implement the algorithm of Lemma 6.14 using the data structure of Lemma 6.18 to maintain the

vertices of the dual arrangement, and use the point-location data structure of Remark 6.4. For a fixed value
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of k, the algorithm performs O(k log n) inner iterations, and the resulting running time is

O
(
(n + k + n2/3k2/3)k log3 n + nk log3 n + k2 logO(1) n

)
= O

(
nk log3 n + n2/3k5/3 logO(1) n

)
.

Summing the above bound over exponentially growing values of k, ending at k = O(σ) (as in the proof

of Lemma 6.14), the overall running time is O
(

nσ log3 n + n2/3σ5/3 logO(1) n
)

. Observe that by Remark 6.1

(B), σ = sep(P) = Ω(
√

n) which implies that the second term is bigger than the first term. The result then

follows. QED.

Remark 6.5. To appreciate Theorem 6.4, consider the grid-like case where σ = O(
√

n). The running time

then becomes O(n3/2 logO(1) n), which is well below quadratic time. The worst case for this algorithm is

when σ = Ω(n) (for example, if the input points are in convex position), where the running time becomes

O(n7/3 logO(1) n).

104



7 Active-learning a convex body in low dimensions

“
Failure is simply the opportunity to begin again, this time more intelligently.

— Henry Ford

Consider a set P ⊆ Rd of n points, and a convex body C provided via a separation oracle. The task at

hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We show that one

can solve this problem in two and three dimensions using O(9P log n) queries, where 9P is the size of the

largest subset of points of P in convex position. In 2D, we provide an algorithm that efficiently generates

these adaptive queries.

Furthermore, we show that in two dimensions one can solve this problem using O(�(P, C) log2 n) oracle

queries, where �(P, C) is a lower bound on the minimum number of queries that any algorithm for this

specific instance requires.

As an application of the above, we show that the discrete geometric median of a point set P in R2 can be

computed in O(n log2 n (log n log log n + 9P)) expected time.

7.1 BACKGROUND

7.1.1 Active learning

Active learning is a subfield of machine learning. At any time, the learning algorithm is able to query

an oracle for the label of a particular data point. One model for active learning is the membership query

synthesis model [9]. Here, the learner wants to minimize the number of oracle queries, as such queries

are expensive—they usually correspond to either consulting with a specialist, or performing an expensive

computation. In this setting, the learning algorithm is allowed to query the oracle for the label of any data

point in the instance space. See [142] for a more in-depth survey on the various active learning models.

7.1.2 PAC learning

A classical approach for learning is using random sampling, where one gets labels for the samples (i.e.,

in the above setting, the oracle is asked for the labels of all items in the random sample). PAC learning
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Figure 7.1: The shaded region shows the symmetric difference between the hypothesis and true classifier. (I)
Learning halfspaces. (II) Learning arbitrary convex regions.

studies the size of the sample needed. For example, consider the problem of learning a halfplane for n

points P ⊂ R2, given a parameter ε ∈ (0, 1). The first stage is to take a labeled random sample R ⊆ P. The

algorithm computes any halfplane that classifies the sample correctly (i.e., the hypothesis). The misclassified

points lie in the symmetric difference between the learned halfplane, and the (unknown) true halfplane,

see Figure 7.1. In this case, the error region is a double wedge, and it is well known that its VC-dimension

[151] is a constant (at most eight). As such, by the ε-net Theorem [88, Theorem 4.1p44], a sample of size

O(ε−1 log ε−1) is an ε-net for double wedges, which implies that this random sampling algorithm has at

most εn error.
A classical example of a hypothesis class that cannot be learned is the set of convex

regions (even in the plane). Indeed, given a set of points P in the plane, any sample

R ⊆ P cannot distinguish between the true region being conv(R) or conv(P). Intuitively,

this is because the hypothesis space in this case grows exponentially in the size of the

sample (instead of polynomially).

conv(R)

We stress that the above argument does not necessarily imply these types of hypothesis classes are

unlearnable in practice. In general, there are other ways for learning algorithms to handle hypothesis classes

with high (or even infinite) VC-dimension (for example, using regularization or assuming there is a large

margin around the decision boundary).

7.1.3 Weak ε-nets

Because ε-nets for convex ranges do not exist, an interesting direction to overcome this problem is to define

weak ε-nets. Recall Definition 4.5p44: a set of points R in the plane—not necessarily a subset of P—is a weak

ε-net for P if any convex body C containing at least εn points of P also contains a point of R. As discussed

in Section 4.1p40, the state of the art weak ε-net construction is by Rubin [137, 138]. However, weak ε-nets

cannot be used for learning such concepts. Indeed, the analysis above required an ε-net for the symmetric

difference of two convex bodies of finite complexity, see Figure 7.1.
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Figure 7.2: (I) A set of points P. (II) The unknown convex body C. (III) Classifying all points of P as either
inside or outside C.

7.1.4 PAC learning with additional parameters

If one assumes the input instance obeys some additional structural properties, then random sampling

can be used. For example, suppose that the point set P has at most k points in convex position. For an

arbitrary convex body C, the convex hull conv(P ∩ C) has complexity at most k. Let R ⊆ P be a random

sample, and C′ be the learned classifier for R. The region of error is the symmetric difference between C

and C′. In particular, since k-vertex polytopes in Rd have VC-dimension bounded by O(d2k log k) [101], this

implies that the error region also has VC-dimension at most O(d2k log k). Hence if R is a random sample

of size O(d2k log kε−1 log ε−1), the ε-net Theorem [88, Theorem 4.1p44] implies that this sampling algorithm

has error at most εn. However, even for a set of n points chosen uniformly at random from the unit square

[0, 1]2, the expected number of points in convex position is O(n1/3) [8]. Since we want |R| < n, this random

sampling technique is only useful when ε is larger than log2 n/n2/3 (ignoring constants).

To summarize the above discussions, random sampling on its own does not seem powerful enough to learn

arbitrary convex bodies, even if one allows some error to be made. In this paper we focus on developing

algorithms for learning convex bodies in low dimensions, where the algorithms are deterministic and do not

make any errors.

7.2 PROBLEM, MOTIVATION, AND RESULTS

7.2.1 The problem

In this chapter, we consider a variation on the active learning problem, in the membership query synthesis

model. Suppose that the learner is trying to learn an unknown convex body C in Rd. Specifically, the learner

is provided with a set P of n unlabeled points in Rd, and the task is to label each point as either inside or

outside C, see Figure 7.2. For a query z ∈ Rd, the oracle either reports that z ∈ C, or returns a hyperplane

separating z and C (as a proof that z 6∈ C). Note that if the query is outside the body, the oracle answer is

significantly more informative than just the label of the point. The problem is to minimize the overall number

of queries performed. We remark that this separation model is the same model as used in Section 4.3p44.
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Recall that the model was previously utilized to construct functional nets, where the aim was to detect the

presence of heavy bodies while avoiding the side effects of the curse of dimensionality.

7.2.2 Hard and easy instances

Note that in the worst case, an algorithm may have to query the oracle for all input points—such a scenario

happens when the input points are in convex position, and any possible subset of the points can be the

points in the (appropriate) convex body. As such, the purpose here is to develop algorithms that are instance

sensitive—if the given instance is easy, they work well. If the given instance is hard, they might deteriorate to

the naive algorithm that queries all points.

Natural inputs where one can hope to do better, are when relatively few points are

in convex position. Such inputs are grid points, or random point sets, among others.

However, there are natural instances of the problem that are easy, despite the input

having many points in convex position. For example, consider when the convex

body is a triangle, with the input point set being n/2 points spread uniformly on

a tiny circle centered at the origin, while the remaining n/2 points are outside the

convex body, spread uniformly on a circle of radius 10 centered at the origin. Clearly,

such a point set can be fully classified using a sequence of a constant number of

oracle queries. See Figure 7.6 for some related examples.

7.2.3 Additional motivation and previous work

Separation oracles The use of separation oracles is a common tool in optimization (e.g., solving exponen-

tially large linear programs) and operations research. It is natural to ask what other problems can be solved

efficiently when given access to this specific type of oracle. For example, Bárány and Füredi [17] study the

problem of computing the volume of a convex body in Rd given access to a separation oracle.

Other types of oracles Various models of computation utilizing oracles have been previously studied

within the computational geometry community. Examples of other models include nearest-neighbor oracles

(i.e., black-box access to nearest neighbor queries over a point set P) [76], proximity probes (in which given

a convex polygon C and a query z, returns the distance from z to C) [130], and linear queries. Recently,

Ezra and Sharir [61] gave an improved algorithm for the problem of point location in an arrangement of

hyperplanes. Here, a linear query consists of a point x and a hyperplane h, and outputs either that x lies on h,

or else the side of h contains x. Alternatively, their problem can be interpreted as querying whether or not a

given point lies in a halfspace h+. Here, we study the more general problem as the convex body can be the

intersection of many halfspaces.
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Furthermore, other types of active learning models (in addition to the membership query model) have

also been studied within the learning community, see, for example, [9].

Active learning As discussed, the problem at hand can be interpreted as active learning a convex body in

relation to a set of points P that need to be classified (as either inside or outside the body), where the queries

are via a separation oracle. We are unaware of any work directly on this problem in the computational

geometry community, while there is some work in the learning community that studies related active

learning classification problems [51, 73, 95, 142].

For example, Kane et al. [95] study the problem of actively learning halfspaces with access to comparison

queries. Given a halfspace h+ to learn, the model has two types of queries:

(i) label queries (given x ∈ Rd, is x ∈ h+?), and

(ii) comparison queries (given x1, x2 ∈ Rd, is x1 closer to the boundary of h+ than x2?).

For example, they show that in the plane, one can classify all points using O(log n) comparison/label queries

in expectation.

Discretely optimizing convex functions As an application of this particular query model, we explore the

connection between active learning a convex body and minimizing a convex function. Concretely, suppose

we are given a set of n points P in the plane and a convex function f : R2 → R equipped with an oracle

that can evaluate f or the derivative of f at a given point. Our goal is to compute the point in P minimizing

minp∈P f (p) using the fewest number of oracle queries (i.e., evaluations of f or the derivative). We discuss

the result in full in Section 7.6.

We show that there is a natural connection between the studied query model and this problem. Namely,

the level sets of a convex function are convex bodies, and the gradient of f can be used to construct separating

lines for the level set. Thus, developing algorithms for active learning a convex body in the membership

query synthesis model in conjunction with the two aforementioned facts leads to alterative methods for

minimizing a convex function over a discrete collection of points. Importantly, the running time of such

algorithms depend not only on how quickly we can evaluate f , but also on the structure of the point set P,

as we aim to develop instance sensitive algorithms.

7.2.4 Results

(A) We develop a greedy algorithm, for points in the plane, that solves the problem using O(9P log n) oracle

queries, where 9P is the size of the largest subset of points of P in convex position. See Theorem 7.1.

It is known that for a random set of n points in the unit square, E[9P] = Θ(n1/3) [8], which readily

implies that classifying these points can be solved using O(n1/3 log n) oracle queries. A similar bound

holds for the
√

n×√n grid. An animation of this algorithm is on YouTube [75]. We also show that this

algorithm can be implemented efficiently, using dynamic segment trees, see Lemma 7.5.
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We remark that Kane et al. [95] develop a framework and randomized algorithm for learning a concept

C, where the expected number of queries depends near-linearly on a parameter they define as the

inference dimension [95, Definition III.1] of the concept class. For our problem, one can show that

the inference dimension is O(9P). As a corollary of their framework, one can obtain a randomized

algorithm that solves our problem where the expected number of queries is O(9P log n). Note that

our algorithm has the same query complexity but is deterministic. See also Section 7.3.4 for additional

details.

(B) The above algorithm naturally extends to three dimensions, also using O(9P log n) oracle queries.

While the proof idea is similar to that of the algorithm in 2D, we believe the analysis in three dimensions

is also technically interesting. See Theorem 7.3.

(C) For a given point set P and convex body C, we define the separation price �(P, C) of an instance (P, C),

and show that any algorithm classifying the points of P in relation to C must make at least �(P, C)

oracle queries (Lemma 7.14).

As an aside, we show that when P is a set of n points chosen uniformly at random from the unit square

and C is a (fixed) smooth convex body, E[�(P, C)] = O(n1/3), and this bound is tight when C is a disk

(the bound also generalizes to higher dimensions). For randomly chosen points, the separation price is

related to the expected size of the convex hull of P ∩ C, which is also known to be Θ(n1/3) [153]. We

believe this result may be of independent interest; the result is proven in [84].

(D) In Section 7.5 we present an improved algorithm for the 2D case, and show that the number of

queries made is O(�(P, C) log2 n). This result is a O(log2 n) approximation to the optimal solution,

see Theorem 7.4.

(E) Section 7.6 presents an application of the above results, we consider the problem of minimizing a

convex function f : R2 → R over a point set P. Specifically, the goal is to compute arg minp∈P f (p). If

f and its derivative can be efficiently evaluated at a given query point, then f can be minimized over P

using O(9P log2 n) queries to f (or its derivative) in expectation. We refer the reader to Lemma 7.22.

Given a set of n points P in Rd, the discrete geometric median of P is a point p ∈ P minimizing the

function ∑q∈P ‖p− q‖. As a corollary of Lemma 7.22, we obtain an algorithm for computing the discrete

geometric median for n points in the plane. The algorithm runs in O(n log2 n · (log n log log n + 9P))

expected time. See Lemma 7.23. In particular, if P is a set of n points chosen uniformly at random from

the unit square, it is known that E[9P] = Θ(n1/3) [8] and hence the discrete geometric median can be

computed in O(n4/3 log2 n) expected time.

While there has been ample work on approximating the geometric median (recently, Cohen et al. [50]

gave a (1 + ε)-approximation algorithm to the geometric median in O(dn log3(1/ε)) time), we are

unaware of any exact sub-quadratic algorithm for the discrete case even in the plane.
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7.3 THE GREEDY ALGORITHM IN TWO DIMENSIONS

7.3.1 Preliminaries

For a set of points P ⊆ R2, let conv(P) denote the convex hull of P. Given a convex body C ⊆ Rd, two

points p, x ∈ Rd \ int(C) are mutually visible, if the segment px does not intersect int(C), where int(C) is

the interior of C. We also use the notation P ∩ C = {p ∈ P | p ∈ C}.
Recall also the definition of a centerpoint (Definition 3.1p29). For a point set P ⊆ Rd, a centerpoint of P

is a point c ∈ Rd, such that for any closed halfspace h+ containing c, we have |h+ ∩ P| ≥ |P| /(d + 1). A

centerpoint always exists, and it can be computed exactly in O(nd−1 + n log n) time [33].

Let C be a convex body in Rd and q ∈ Rd be a point such that q lies outside C. A hyperplane h separates

q from C if q lies in the closed halfspace h+ bounded by h, and C is contained in the open halfspace h−

bounded by h. This definition allows the separating hyperplane to contain the point q, and will simplify the

descriptions of the algorithms.

Given a set of points P in R2 and a convex body C specified via a separation oracle, recall that the problem

is to classify, for all the points of P, whether or not they are in C, using the fewest oracle queries possible. We

define some operations the algorithm will use before stating the algorithm in full. Finally, we analyze the the

number of queries the algorithm performs.

7.3.2 The algorithm

Initially, the algorithm copies P into a set U of unclassified points. The algorithm is going to maintain an

inner approximation B ⊆ C. There are two types of updates (Figure 7.3 illustrates the two operations):

(A) expand(p): Given a point p ∈ C \ B, the algorithm is going to:

(i) Update the inner approximation: B← conv(B ∪ {p}).
(ii) Remove (and mark) newly covered points: U ← U \ B.

(B) remove(`): Given a closed halfplane `+ such that int(C) ∩ `+ = ∅, the algorithm marks all the points

of U` = U ∩ int(`+) as being outside C, and sets U ← U \U`.

The algorithm repeatedly performs rounds, as described next, until the set of unclassified points is empty.

At every round, if the inner approximation B is empty, then the algorithm sets U+ = U. Otherwise, the

algorithm picks a line ` that is tangent to B with the largest number of points of U on the other side of ` than

B. Let `− and `+ be the two closed halfspace bounded by `, where B ⊆ `−. The algorithm computes the

point set U+ = U ∩ `+. We have two cases:

A. Suppose |U+| is of constant size. The algorithm queries the oracle for the status of each of these points.

For every point p ∈ U+, such that p ∈ C, the algorithm performs expand(p). Otherwise, the oracle

returned a separating line `, and the algorithm calls remove(`+).
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Figure 7.3: (I) Performing expand(p), and marking points inside C. (II) Performing remove(`), and marking
points outside C.

B. Otherwise, |U+| does not have constant size. The algorithm computes a centerpoint c ∈ R2 for U+,

and asks the oracle for the status of c. There are two possibilities:

B.I. If c ∈ C, then the algorithm performs expand(c).

B.II. If c /∈ C, then the oracle returned a separating line h, and the algorithm performs remove(h).

7.3.3 Analysis

Let Bi be the inner approximation at the start of the ith iteration, and let z be the first index where Bz is not

an empty set. Similarly, let Ui be the set of unclassified points at the start of the ith iteration, where initially

U1 = U.

Lemma 7.1. The number of (initial) iterations in which the inner approximation is empty is z = O(log n).

Proof: As soon as the oracle returns a point that is in C, the inner approximation is no longer empty. As such,

we need to bound the initial number of iterations where the oracle returns that the query point is outside C.

Let fi = |Ui|, and note that U1 = P and f1 = |P| = n. Let ci be the centerpoint of Ui, which is the query point

in the ith iteration (ci is outside C). As such, the line separating ci from C returned by the oracle has at least

fi/3 points of Ui on the same side as ci by the centerpoint property. All of these points get labeled in this

iteration, and it follows that fi+1 ≤ (2/3) fi. This implies the claim, since fz < 1 for z =
⌈
log3/2 n

⌉
+ 1. QED.

Definition 7.1 (Visibility graph). Consider the graph Gi over Ui, where two points p, r ∈ Ui are connected

⇐⇒ the segment pr does not intersect the interior of Bi.

The visibility graph as an interval graph For a point p ∈ Ui, let Ii(p) be the set of all directions v (i.e.,

vectors of length 1) such that there is a line perpendicular to v that separates p from Bi. Formally, a line `

separates p from Bi, if the interior of Bi is on one side of ` and p is on the (closed) other side of ` (if p ∈ `, the

line is still considered to separate the two). Clearly, Ii(p) is a circular interval on the unit circle. See Figure 7.4.

The resulting set of intervals is Ii = {Ii(p) | p ∈ Ui}. It is easy to verify that the intersection graph of Ii is

Gi. Throughout the execution of the algorithm, the inner approximation Bi grows monotonically, this in turn
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Figure 7.4: Four points and a convex body with their associated circular intervals.

implies that the visibility intervals shrink over time; that is, Ii(p) ⊆ Ii−1(p), for all p ∈ P and i. Intuitively,

in each round, either many edges from Gi are removed (because intervals had shrunk and they no longer

intersect), or many vertices are removed (i.e., the associated points are classified).

Definition 7.2. Given a set I of objects (e.g., intervals) in a domain D (e.g., unit circle), the depth of a point

p ∈ D is the number of objects in I that contain p. Let depth(I) be the maximum depth of any point in D.

When it is clear, we use depth(G) to denote depth(I), where G = (I , E) is the intersection graph of the

intervals I as defined above. Throughout, we commonly refer to G as the intersection graph.

First, we bound the number of edges in this visibility graph G and then argue that in each iteration, either

many edges of G are discarded or vertices are removed (as they are classified).

Lemma 7.2. Let I be a set of n intervals on the unit circle, and let G = (I , E) be the associated intersection graph.

Then |E| = O(αω2), where ω = depth(I) and α = α(G) is the size of the largest independent set in G. Furthermore,

the upper bound on |E| is tight.

Proof: Let J be the largest independent set of intervals in G. The intervals of J divide the circle into 2 |J|
(atomic) circular arcs. Consider such an arc γ, and let K(γ) be the set of all intervals of I that are fully

contained in γ. All the intervals of K(γ) are pairwise intersecting, as otherwise one could increase the size of

the independent set. As such, all the intervals of K(γ) must contain a common intersection point. It follows

that |K(γ)| ≤ ω.

Let K′(γ) be the set of all intervals intersecting γ. This set might contain up to 2ω additional intervals

(that are not contained in γ), as each such additional interval must contain at least one of the endpoints of γ.

Namely, |K′(γ)| ≤ 3ω. In particular, any two intervals intersecting inside γ both belong to K′(γ). As such,

the total number of edges contributed by K′(γ) to G is at most (3ω
2 ) = O(ω2). Since there are at most 2α arcs

under consideration, the total number of edges in G is bounded by O(αω2), which implies the claim.

The lower bound is easy to see by taking an independent set of intervals of size α, and replicating every

interval ω times. QED.
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Lemma 7.3. Let P be a set of n points in the plane lying above the x-axis, c be a centerpoint of P, and S = (P
2) be set

of all segments induced by P. Next, consider any point r on the x-axis. Then, the segment cr intersects at least n2/36

segments of S.

Proof: If the segment cr intersects the segment p1 p2, for p1, p2 ∈ P, then we consider p1 and p2 to no longer

be mutually visible. It suffices to lower bound the number of pairs of points that lose mutual visibility of

each other.

r

c`

`+

Consider a line ` passing through the point c. Let `+ be the closed halfspace bounded by ` containing r.

Note that |P ∩ `+| ≥ n/3, since c is a centerpoint of P, and c ∈ `. Rotate ` around c until there are ≥ n/6

points on each side of rc in the halfspace `+. To see why this rotation of ` exists, observe that the two

halfspaces bounded by the line spanning rc, have zero points on one side, and at least n/3 points on the

other side—a continuous rotation of ` between these two extremes, implies the desired property.

Observe that points in `+ and on opposite sides of the segment cr cannot see each other, as the segment

connecting them must intersect cr. Consequently, the number of induced segments that cr intersects is at

least n2/36. QED.

For a graph G, we let E(G) denote the set of edges in G, and let |E(G)| denote the number of edges in G.

Lemma 7.4. Let Gi be the intersection graph, in the beginning of the ith iteration, and let mi = |E(Gi)|. After the ith

iteration of the greedy algorithm, we have mi+1 ≤ mi −ω2/36, where ω = depth(Gi).

Proof: Recall that in the algorithm U+ = Ui ∩ `+ is the current set of unclassified points and ` is the line

tangent to Bi, where `+ is the closed halfspace that avoids the interior of Bi and contains the largest number

of unlabeled points of Ui. We have that ω = |U+|.
If a remove operation was performed in the ith iteration, then the number of points of U+ that are

discarded is at least ω/3. In this case, the oracle returned a separating line h between a centerpoint c of U+

and the inner approximation. For the halfspace h+ containing c, we have ti = |U+ ∩h+| ≥ |U+| /3 ≥ ω/3.

Furthermore, all the points of U+ are pairwise mutually visible (in relation to the inner approximation Bi).

Namely,

mi+1 =
∣∣E(Gi − (U+ ∩h+)

)∣∣ ≤ mi −
(

ti
2

)
≤ mi −ω2/36.

If an expand operation was performed, the centerpoint c of U+ is added to the current inner approximation

Bi. Let r be a point in ` ∩ Bi, and let ci be the centerpoint of Ui computed by the algorithm. By Lemma 7.3
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applied to r, c and U+, we have that at least ω2/36 pairs of points of U+ are no longer mutually visible to

each other in relation to Bi+1. We conclude, that at least ω2/36 edges of Gi are no longer present in Gi+1.QED.

Definition 7.3. A subset of points X ⊆ P ⊆ R2 are in convex position, if all the points of X are vertices of

conv(X) (note that a point in the middle of an edge is not considered to be a vertex). The index of P, denoted

by 9P, is the cardinality of the largest subset of P of points that are in convex position.

Theorem 7.1. Let C be a convex body provided via a separation oracle, and let P be a set of n points in the plane. The

greedy classification algorithm performs O
(
(9P + 1) log n

)
oracle queries. The algorithm correctly identifies all points

in P ∩ C and P \ C.

Proof: By Lemma 7.1, the number of iterations (and also queries) in which the inner approximation is empty

is O(log n), and let z = O(log n) be the first iteration such that the inner approximation is not empty. It

suffices to bound the number of queries made by the algorithm after the inner approximation becomes

non-empty.

For i ≥ z, let Gi = (Ui, Ei) denote the visibility graph of the remaining unclassified points Ui in the

beginning of the ith iteration. Any independent set in Gi corresponds to a set of points X ⊆ P that do not

see each other due to the presence of the inner approximation Bi. That is, X is in convex position, and

furthermore |X| ≤ 9P.

For 0 ≤ t ≤ n, let s(t) be the first iteration i, such that depth(Gi) ≤ t. Since the depth of Gi is a monotone

decreasing function, this quantity is well defined. An epoch is a range of iterations between s(t) and s(t/2),

for any parameter t. We claim that an epoch lasts O(9P) iterations (and every iteration issues only one oracle

query). Since there are only O(log n) (non-overlapping) epochs till the algorithm terminates, as the depth

becomes zero, this implies the claim.

So consider such an epoch starting at i = s(t). We have m = mi = |E(Gi)| = O(9Pt2), by Lemma 7.2,

since 9P is an upper bound on the size of the largest independent set in Gi. By Lemma 7.4, as long as the

depth of the intervals is at least t/2, the number of edges removed from the graph at each iteration, during

this epoch, is at least Ω(t2). As such, the algorithm performs at most O(mi/t2) = O(9P) iterations in this

epoch, till the maximum depth drops to t/2. QED.

Implementing the greedy algorithm With the use of dynamic segment trees [116] we show that the greedy

classification algorithm can be implemented efficiently.

Lemma 7.5. Let C be a convex body provided via a separation oracle, and let P be a set of n points in the plane. If

an oracle query costs time T, then the greedy algorithm can be implemented in O
(
n log2 n log log n + T · 9P log n

)
expected time.

Proof: The algorithm follows the proof of Theorem 7.1. We focus on efficiently implementing the algorithm

once inner approximation is no longer empty. Let U ⊆ P be the subset of unclassified points. By binary
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searching on the vertices of the inner approximation B, we can compute the collection of visibility intervals

I for all points in U in O(|U| log m) = O(n log n) time (recall that I is a collection of circular intervals on

the unit circle). We store these intervals in a dynamic segment tree T with the modification that each node v

in T stores the maximum depth over all intervals contained in the subtree rooted at v. Note that T can be

made fully dynamic to support updates in O(log n log log n) time [116].

An iteration of the greedy algorithm proceeds as follows. Start by collecting all points U+ ⊆ U realizing

the maximum depth using T. When t = |U+|, this step can be done in O(log n + t) time by traversing T. We

compute the centerpoint of U+ in O(t log t) expected time [33] and query the oracle using this centerpoint.

Either points of U are classified (and we delete their associated intervals from T) or we improve the inner

approximation. The inner approximation (which is the convex hull of query points inside the convex body

C) can be maintained in an online fashion with insert time O(log n) [132, Chapter 3]. When the inner

approximation expands, the points of U+ have their intervals shrink. As such, we recompute I(p) for each

p ∈ U+ and reinsert I(p) into T.

As defined in the proof of Theorem 7.1, an epoch is the subset of iterations in which the maximum depth

is in the range [t/2, t], for some integer t. During such an epoch, we make two claims:

(i) there are σ = O(n) updates to T, and

(ii) the greedy algorithm performs O(n/t) centerpoint calculations on sets of size O(t).

Both of these claims imply that a single epoch of the greedy algorithm can be implemented in expected

time O(σ log n log log n + n log n + T · 9P). As there are O(log n) epochs, the algorithm can be implemented

in expected time O(n log2 n log log n + T · 9P log n).

We now prove the first claim. Recall that we have a collection of intervals I lying on the circle of directions.

Partition the circle into k atomic arcs, where each arc contains t/10 endpoints of intervals in I . Note that

k = 20n/t = O(n/t). For each circular arc γ, let Iγ ⊆ I be the set of intervals intersecting γ. As the

maximum depth is bounded by t, we have that |Iγ| ≤ t + t/10 = 1.1t. In particular, if G[Iγ] is the induced

subgraph of the intersection graph G, then G[Iγ] has at most (|Iγ|
2 ) = O(t2) edges.

In each iteration, the greedy algorithm chooses a point in an arc γ (we say that γ is hit) and edges are only

deleted from G[Iγ]. The key observation is that an arc γ can only be hit O(1) times before all points of γ

have depth below t/2, implying that it will not be hit again until the next epoch. Indeed, each time γ is hit,

the number of edges in the induced subgraph G[Iγ] drops by a constant factor (Lemma 7.4). Additionally,

when G[Iγ] has less than (t/2
2 ) edges then any point on γ has depth less than t/2. These two facts imply that

an arc is hit O(1) times.

When an arc is hit, we must reinsert |Iγ| = O(t) intervals into T. In particular, over a single epoch, the

total number of hits over all arcs is bounded by O(k). As such, σ = O(kt) = O(n).

For the second claim, each time an arc is hit, a single centerpoint calculation is performed. Since each

arc has depth at most t and is hit a constant number of times, there are O(k) = O(n/t) such centerpoint
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calculations in a single epoch, each costing expected time O(t log t). QED.

Section 7.6 presents an application of the greedy classification algorithm. Namely, we present an efficient

algorithm for computing the discrete geometric median of a point set (Lemma 7.23).

7.3.4 An alternative algorithm via the inference dimension

Kane et al. [95] define the notion of inference dimension, which in our context is the minimum number of

queries needed to classify all points.

C

Figure 7.5: The minimal external set must be convex.

Lemma 7.6. Let C be a convex body provided via a separation oracle, and let P be a set of n points in the plane. There

is a set of 29P oracle queries whose answers can be used to classify all points of P correctly.

Proof: We put the at most 9P vertices of conv(P ∩ C) into a query set. Querying these points is enough

to label correctly all points inside the body C. As for the points of P outside C, let Q ⊆ P \ C be the

minimum size subset such that querying these points correctly labels all points outside C. Each point p ∈ Q

is associated with a halfspace h+p that contains C. Let H be this set of halfspaces. Observe that for any point

p ∈ Q, there is a point witness(p) ∈ P \ C for which h+p does not contain witness(p) (as otherwise, p can be

removed from Q). Let R = {witness(p) | p ∈ Q}. The points of U are in the faces of the arrangement A(H)

that are adjacent to the face ∩p∈Qh+p , see Figure 7.5.

Since each point of R is separable by a line from the remaining points of R, it follows that R is convex. As

such, |Q| = |R| ≤ 9P which implies the result. QED.

The above lemma implies that the inference dimension of P is 29P. Plugging this into the algorithm of

Kane et al. [95] results in an algorithm that labels all points correctly and performs the same number of

queries as Theorem 7.1 in expectation. The advantage of Theorem 7.1 is that it does not require knowing the

value of 9P in advance. However, one could perform an exponential search for a tight upper bound on 9P,

and still use the algorithm of Kane et al. [95]. We leave the question of experimentally comparing the two

algorithms as an open problem for future research.
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Sketch of the algorithm of [95] The algorithm of Kane et al. [95] specialized for our case works as follows.

Start by randomly picking a sample of size O(9P) and query the oracle with each of these points. Next,

stream the unlabeled points through the computed regions, leaving only the points that are yet to be labeled.

The algorithm repeats this process O(log n) times, in each iteration working on the remaining unlabeled

points. By proving that in expectation at least half of the points are being labeled at each round, it follows

that O(log n) iterations suffice.

7.4 THE GREEDY ALGORITHM IN THREE DIMENSIONS

Consider the 3D variant of the 2D problem: given a set of points P in R3 and a convex body C specified

via a separation oracle, the task at hand is to classify for every point of P whether or not it is in C using the

fewest number of oracle queries.

The greedy algorithm naturally extends, where at each iteration i a plane ei is chosen that is tangent to the

current inner approximation Bi, such that it’s closed halfspace (which avoids the interior of Bi) contains the

largest number of unclassified points from the set Ui. If the queried centerpoint is outside, the oracle returns

a separating plane and as such points can be discarded by the remove operation. Similarly, if the centerpoint

is reported inside, then the algorithm calls the expand operation and updates the 3D inner approximation Bi.

7.4.1 Analysis

Following the analysis of the greedy algorithm in 2D, we (conceptually) maintain the following set of

objects: For a point p ∈ Ui, let di(p) be the set of all unit length directions v ∈ R3 such that a plane

perpendicular to v separates p from Bi. Let Pi = {di(p) | p ∈ Ui}. A set of objects form a collection of

pseudo-disks if the boundary of every pair of them intersect at most twice. The following claim shows that

Pi is a collection of pseudo-disks on S, where S is the sphere of radius one centered at the origin.

Lemma 7.7. The set Pi = {di(p) ⊆ S | p ∈ Ui} is a collection of pseudo-disks.

Proof: Fix two points p, r ∈ Ui such that the boundaries of di(p) and di(r) intersect on S. Let ` be the line in

R3 passing through p and r. Consider any plane e such that ` lies on e. Since ` is fixed, e has one degree of

freedom. Conceptually rotate euntil becomes tangent to Bi at point u′. The direction of the normal to this

tangent plane, is a point in X = ∂di(p) ∩ ∂di(r). Note that this works also in the other direction—any point

in X corresponds to a tangent plane passing through `. The family of planes passing through ` has only two

tangent planes to C. It follows that |X| = 2. As such, any two regions in Pi intersect as pseudo-disks. QED.

We need the following two classical results that follows from the Clarkson-Shor [47] technique.

Lemma 7.8. Let P be a collection of n pseudo-disks, and let V≤k(A) be the set of all vertices of depth at most k in the

arrangement A = A(P). Then |V≤k(A)| = O(nk).
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Proof: Let S ⊆ P be a random sample where each pseudo-disk is independently placed into S with probabil-

ity 1/k. For each p ∈ V≤k(A), let Ep be the event that p is a vertex in the union U(S) of this random subset of

pseudo-disks. The probability that p is part of the union is at least the probability that both pseudo-disks

defining p in A are sampled into S and the remaining k− 2 objects containing p are not in S. Thus,

Pr
[
Ep
]
≥ 1

k2

(
1− 1

k

)k
≥ 1

e2k2 ,

since 1− 1/x ≥ e−2/x for x ≥ 2. If |U(S)| denotes the number of vertices on the boundary of the union,

then linearity of expectations imply E[|U(S)|] ≥ |V≤k(A)| /(e2k2). On the other hand, it is well known

the union complexity of a collection of n pseudo-disks is O(n) [97]. Therefore, E[|U(S)|] ≤ E[c |S|] ≤
cn/k, for some appropriate constant c. Putting both bounds on E[|U(S)|] together, it follows that cn/k ≥
|V≤k(A)| /(e2k2) ⇐⇒ |V≤k(A)| = O(nk). QED.

For a point p, let depth(p,P) denote the number of pseudo-disks of P containing p (see also Defini-

tion 7.2p113).

Lemma 7.9. Let P be a collection of n pseudo-disks. For two integers 0 < t ≤ k, a subset X ⊆ P is a (t, k)-tuple if

(i) |X| ≤ t,

(ii) ∃p ∈ ∩d∈Xd, and

(iii) depth(p,P) ≤ k.

Let L(t, k, n) be the set of all (≤ t, k)-tuples of P . Then |L(t, k, n)| = O(ntkt−1).

Proof: Let S ⊆ P be a random sample, where each pseudo-disk is independently placed into S with

probability 1/k. Consider a specific (t, k)-tuple X, with a witness point p of depth ≤ k. Without loss of

generality, by moving p, one can assume p is a vertex of A(P).
Let EX be the event that p is of depth exactly t in A(S), and X ⊆ S. For EX to occur, all the objects of X

need to be sampled into S, and each of the at most k− t pseudo-disks containing p in its interior are not in S.

Therefore

Pr[EX ] ≥
(1− 1/k)depth(p,P)−|X|

k|X|
≥ (1− 1/k)k

kt ≥ 1
e2kt .

Note, that a vertex of depth ≤ k in A(S) corresponds to at most one such an event happening. We thus have,

by linearity of expectations, that

|L(t, k, n)|
e2kt ≤ E

[
|V≤t(A(S))|

]
= O(tn/k),

by Lemma 7.8. QED.

Lemma 7.10. Let Gi = (Pi, Ei) be the intersection graph of the pseudo-disks of Pi (in the ith iteration). If A(Pi) has

maximum depth k, then |Ei| = O(nk). Furthermore, α(Gi) = Ω(n/k), where α(Gi) denotes the size of the largest

independent set in Gi.
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Proof: The first claim readily follows from Lemma 7.9. Indeed, |Ei| = L(2, k, n) = O(nk)—since every

intersecting pair of pseudo-disks induces a corresponding (2, k)-tuple.

For the second part, Turán’s Theorem states that any graph has an independent set of size at least

n/
(
davg(Gi) + 1

)
, where davg(Gi) = 2 |Ei| /n ≤ ck is the average degree of Gi and c is some constant. It

follows that α(Gi) ≥ n/(ck + 1) = Ω(n/k). QED.

The challenge in analyzing the greedy algorithm in 3D is that mutual visibility between pairs of points is

not necessarily lost as the inner approximation grows. As an alternative, consider the hypergraph Hi = (Pi, Ei),

where a triple of pseudo-disks d1, d2, d3 ∈ Pi form a hyperedge {d1, d2, d3} ∈ Ei ⇐⇒ d1 ∩d2 ∩d3 6= ∅

(this is equivalent to the condition that the corresponding triple of points span a triangle which does not

intersect Bi).

As in the analysis of the algorithm in 2D, we first bound the number of edges in Hi and then argue that

enough progress is made in each iteration.

Lemma 7.11. Let Hi = (Pi, Ei) be the hypergraph in iteration i, and let Gi be the corresponding intersection graph of

Pi. If A(Pi) has maximum depth k, then |Ei| = O(α(Gi)k3).

Proof: Lemma 7.10 implies that Gi has an independent set of size Ω( fi/k), where fi = |Pi|. Lemma 7.9

implies that |Ei| ≤ |L(3, k, fi)| = O( fik2) = O(α(Gi)k3). QED.

The following is a consequence of the Colorful Carathéodory Theorem [15], see Theorem 9.1.1 in [112].

Theorem 7.2. Let P be a set of n points in Rd and c be the centerpoint of P. Let S = ( P
d+1) be the set of all d + 1

simplices induced by P. Then for sufficiently large n, the number of simplices in S that contain c in their interior is at

least cdnd+1, where cd is a constant depending only on d.

Next, we argue that in each iteration of the greedy algorithm, a constant fraction of the edges in Hi are

removed. The following is the higher dimensional version of Lemma 7.3.

Lemma 7.12. Let P be a set of n points in R3 lying above the xy-plane, c be the centerpoint of P and T = (P
3) be the

set of all triangles induced by P. Next, consider any point r on the xy-plane. Then the segment cr intersects at least

Ω(n3) triangles of T.

Proof: Let S = ( P
d+1) be the set of all simplices induced by P. Theorem 7.2 implies that the centerpoint c is

contained in n4/c1 simplices of S for some constant c1 > 1. Let ∆ be a simplex that contains c and observe

the segment cr must intersect at least one of the triangular faces τ of ∆. As ∆ ∈ S, charge this simplex

∆ to the triangular face τ. Applying this counting to all the simplices containing c, implies that at least

n4/c1 charges are made. On the other hand, a triangle τ can be charged at most n− 3 times (because a

simplex can be formed from τ and one other additional point of P). It follows that cr intersects at least

(n4/c1)/(n− 3) = Ω(n3) triangles of T. QED.
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Lemma 7.13. In each iteration of the greedy algorithm, the number of edges in the hypergraph Hi = (Pi, Ei) decreases

by at least Ω(k3), where k is the maximum depth of any point in A(Pi).

Proof: Recall that U+ = Ui ∩ e+ is the current set of unclassified points and e is the plane tangent to Bi,

where e+ is the closed halfspace that avoids the interior of Bi and contains the largest number of unlabeled

points. Note that |U+| ≥ k.

In a remove operation, arguing as in Lemma 7.4, implies that the number of points of U+ that are discarded

is at least ti ≥ k/4. Since all of the discarded points are in a halfspace avoiding Bi, it follows that all the

triples they induce are in Hi. Namely, at least (ti
3) = Ω(k3) hyperedges get discarded.

In an expand operation, the centerpoint c of U+ is added to the current inner approximation Bi. Since all

of the points of U+ lie above the plane e, applying Lemma 7.12 on U+ with the centerpoint c and a point

lying on the plane e inside the (updated) inner approximation, we deduce that at least Ω(k3) hyperedges

are removed. QED.

Theorem 7.3. Let C ⊆ R3 be a convex body provided via a separation oracle, and let P be a set of n points in R3.

The greedy classification algorithm performs O
(
(9P + 1) log n

)
oracle queries. The algorithm correctly identifies all

points in P ∩ C and P \ C.

Proof: The proof is essentially the same as Theorem 7.1. Arguing as in Lemma 7.1 implies that there are at

most O(log n) iterations (and thus also oracle queries) in which the inner approximation is empty.

Now consider the hypergraph H1 = (P1, E1) at the start of the algorithm execution. As the algorithm

progresses, both vertices and hyperedges are removed from the hypergraph. Let Hi = (Pi, Ei) denote the

hypergraph in the ith iteration of the algorithm. Recall that Pi is a set of pseudo-disks associated with each

of the points yet to be classified. Observe that any independent set of pseudo-disks in the corresponding

intersection graph Gi corresponds to an independent set of points with respect to the inner approximation

Bi, and as such is a subset of points in convex position. Therefore, the size of any such independent set is

bounded by 9P.

Let ki denote the maximum depth of any vertex in the arrangement A(Pi). Lemma 7.11 implies that

|Ei| = O
(
9Pk3

i
)
. Lemma 7.13 implies that the number of hyperedges in the ith iteration decreases by at

least Ω(k3
i ). Namely, after O(9P) iterations, the maximum depth is halved. It follows that after O(9P log n)

iterations, the maximum depth is zero, which implies that all the points are classified. Since the algorithm

performs one query per iteration, the claim follows. QED.

7.5 AN INSTANCE-OPTIMAL APPROXIMATION IN TWO DIMENSIONS

Before discussing the improved algorithm, we present a lower bound on the number of oracle queries

performed by any algorithm that classifies all the given points. We then present the improved algorithm,

which matches the lower bound up to a factor of O(log2 n).
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Figure 7.6: The separation price, for the same point set, is different depending on how “tight” the body is in
relation to the inner and outer point set.

7.5.1 A lower bound

Given a set P of points in the plane, and a convex body C, the outer fence of P is a closed convex polygon

Fout with minimum number of vertices, such that C ⊆ Fout and C ∩ P = Fout ∩ P. Similarly, the inner fence

is a closed convex polygon Fin with minimum number of vertices, such that Fin ⊆ C and C ∩ P = Fin ∩ P.

Intuitively, the outer fence separates P \ C from ∂C, while the inner fence separates P ∩ C from ∂C. The

separation price of P and C is

�(P, C) = |Fin|+ |Fout| ,

where |F| denotes the number of vertices of a polygon F. See Figure 7.6 for an example.

Lemma 7.14. Let C be a convex body provided via a separation oracle, and let P be a point set in the plane. Any

algorithm that classifies the points of P in relation to C, must perform at least �(P, C) separation oracle queries.

Proof: Consider the set Q of queries performed by the optimal algorithm for the fixed input P and C. Partition

Q into the points inside and outside C. The set of points inside, Qin = Q ∩ C has the property that Qin ⊆ C

and conv(Qin) ∩ P = C ∩ P—otherwise, there would be a point of C ∩ P that is not classified. Namely, the

vertices of conv(Qin) are vertices of a fence that separates the points of P inside C from the boundary of C.

As such, |Qin| ≥ |conv(Qin)| ≥ |Fin|.
Similarly, each query in Qout = Q \ Qin gives rise to a separating halfplane. The intersection of the

corresponding halfplanes is a convex polygon H that contains C, and furthermore contains no point of P \ C.

Namely, the boundary of H behaves like an outer fence. Hence, |Qout| ≥ |H| ≥ |Fout|.
Combining both inequalities, we obtain |Q| = |Qin|+ |Qout| ≥ |Fin|+ |Fout| = �(P, C), as claimed. QED.

Remarks. (i) Naturally the separation price, and thus the proof of the lower bound, generalizes to higher

dimensions [84]. (ii) The lower bound only holds for d ≥ 2. In 1D, the problem can be solved using O(log n)

queries with binary search. The above would predict that any algorithm needs Ω(1) queries. However it is

not hard to argue a stronger lower bound of Ω(log n). (iii) In [84], we show that when P is a set of n points
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Figure 7.7: A directional climb. An iteration is done using the line `. After updating B to include the query q,
the algorithm chooses a new extreme line h tangent to B in the direction of v.

chosen uniformly at random from a square and C is a smooth convex body, E[�(P, C)] = O(n1/3). Thus,

when the points are randomly chosen, one can think of �(P, C) as growing sublinearly in n.

7.5.2 Useful operations

We start by presenting some basic operations that the new algorithm will use.

A directional climb Given a direction v, a directional climb is a sequence of iterations where in each

iteration the algorithm finds the extreme line ` perpendicular to v that is tangent to the inner approximation

B. The algorithm then performs an iteration with `, as described in Section 7.3.2. Specifically, the algorithm

computes the centerpoint z of all points in the halfspace bounded by ` that avoids C. Depending on whether

z ∈ C, we either perform an expand or remove operation (see Section 7.3.2). We then classify points

accordingly and recompute ` with the updated inner approximation B. See Figure 7.7 for an illustration. The

directional climb ends when the outer halfspace induced by this line contains no unclassified point.

Lemma 7.15. A directional climb requires O(log n) oracle queries.

Proof: Consider the tangent to B in the direction of v. At each iteration, we claim the number of points in

this halfplane is reduced by a factor of 1/3. Indeed, if the query (i.e., centerpoint) is outside C then at least

a third of these points got classified as being outside. Alternatively, the tangent halfplanes moves in the

direction of v, since the query point is inside C. But then the new halfspace contains at most 2/3 fraction of

the previous point set—again, by the centerpoint property. QED.

Line cleaning A pocket is a connected region of conv(U ∪ B) \ B, see Figure 7.8. For the set P of input

points, consider the set of all lines

L(P) = {line(p, r) | p, r ∈ P} (7.1)

they span.
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B B

Figure 7.8: Unclassified points and their pockets.

Let ` be a line that splits a pocket Υ into two regions, and furthermore, it intersects B. Let I = ` ∩ Υ, and

consider all the intersection points of interest along I in this pocket. That is,

Ξ(Υ, `, P) = I ∩ L(P) =
{
(Υ ∩ `) ∩h | h ∈ L(P)

}
.

In words, we take all the pairs of points of P (each such pair induces a line) and we compute the intersection

points of these lines with the interval I of interest. Ordering the points of this set along `, a prefix of them is

in C, while the corresponding suffix are all outside C. One can easily compute this prefix/suffix by doing a

binary search, using the separation oracle for C—see the lemma below for details. Each answer received

from the oracle is used to update the point set, using expand or remove operations. We refer to this operation

along ` as cleaning the line `. See Figure 7.9.

Υ

B

`

I

Υ

B

`

C

h
Figure 7.9: Line cleaning. All the intersection points of interest along ` are classified. The binary search
results in the oracle returning a line h that separates the points outside from the points inside.

Lemma 7.16. Given a pocket Υ, and a splitting line `, one can clean the line `—that is, classify all the points of

Ξ = Ξ(Υ, `, P) using O
(
log n

)
oracle queries. By the end of this process, Υ is replaced by two pockets, Υ1 and Υ2 that

do not intersect `. The pockets Υ1 or Υ2 may be empty sets.

Proof: First, we describe the line cleaning procedure in more detail. The algorithm maintains, in the beginning

of the ith iteration, an interval Ji on the line ` containing all the points of Ξ that are not classified yet. Initially,

J1 = Υ ∩ `. One endpoint, say pi ∈ Ji is on ∂Bi, and the other, say p′i, is outside C, where Bi is the inner
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approximation in the beginning of the ith iteration.

In the ith iteration, the algorithm computes the set Ξi = Ji ∩ Ξ. If this set is empty, then the algorithm

is done. Otherwise, it picks the median point ui, in the order along ` in Ξi, and queries the oracle with ui.

There are two possibilities:

(A) If ui ∈ C then the algorithm sets Ξi+1 = Ξi \ [pi, ui), and Ji+1 = Ji \ [pi, ui).

(B) If ui /∈ C, then the oracle provided a closed halfspace h+ that contains C. Let h− be the complement

open halfspace that contains ui. The algorithm sets Ξi+1 = Ξi \ h− and Ji+1 = Ji ∩ h+.

This resolves the status of at least half the points in Ξi, and shrinks the active interval. The algorithm repeats

this till Ξi becomes empty. Since |Ξ| = O(n2), this readily implies that the algorithm performs O(log n)

iterations.

We now argue that the pocket is split—that is, Υ1 and Υ2 do not intersect `. Assume that it is false, and let

B′ be the inner approximation after this procedure is done. Let L (resp. R) be the points of UΥ = U ∩ Υ that

are unclassified on one side (resp. other side) of `. If the pocket is not split, then there are two points p ∈ L

and r ∈ R, such that pr ∩ B′ = ∅, and ∂conv(B′ ∪ L ∪ R) intersects ` at the point u = pr ∩ `. However, by

construction, the point u ∈ Ξ. As such, the point u is now classified as either being inside or outside C, as it

is a point in Ξ. If u is outside, then the halfplane h− that classified it as such, must had classified either p or r

as being outside C, which is a contradiction. The other option is that u is classified as being inside, but then

it is in B′ which is again a contradiction, as it implies that B′ intersects the segment pr. QED.

Vertical pocket splitting Consider a pocket Υ such that all of its points lie vertically above B, and the

bottom of Υ is part of a segment of ∂B, see Figure 7.10. Such a pocket can be viewed as being defined by an

interval on the x-axis corresponding to its two vertical walls. Let UΥ be the set of unclassified points in this

pocket. In each iteration, the algorithm computes the centerpoint z of UΥ, and queries the separation oracle

for the label of z. As long as the query point is outside C, the algorithm performs a remove operation using

the returned separating line.

When the oracle returns that the query point z is inside C, the algorithm computes the vertical line `z

through z. The algorithm now performs line cleaning on this vertical line. This operation splits Υ into two

sub-pockets. Crucially, since z was a centerpoint for UΥ, the number of points in each of the two sub-pockets

is at most 2 |UΥ| /3. See Figure 7.10.

7.5.3 The algorithm

The algorithm starts in the same way as the greedy algorithm of Section 7.3.2, which we restate for

convenience. Recall that U is the set of unclassified points (initially U = P). At all times, the algorithm

maintains the inner approximation B ⊆ C. At the beginning, B is uninitialized. The algorithm computes the

centerpoint z of U and queries the oracle for the label of z. While z is outside, we classify the appropriate set
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Figure 7.10: Vertical pocket splitting. In this example, the centerpoint z lies inside C. Thus we construct the
vertical line `z through z (left). Next, we perform a line cleaning operation on `z. This splits the original
pocket Υ into two new pockets Υ1, Υ2, while classifying some points in the process (right). Observe that the
unclassified points in Υ1 and Υ2 are no longer mutually visible to each other after the line cleaning operation.

of points as outside (according to the separating hyperplane returned from the oracle), update U, and repeat.

As soon as the computed centerpoint z lies in C, we set B = z and continue to the stage phase.

Next, the algorithm performs two directional climbs (Lemma 7.15) in the positive and negative directions

of the x-axis. This uses O(log n) oracle queries by Lemma 7.15 and results in a computed segment vv′ ⊆ C,

where vv′ are vertices of the inner approximation B, such that all unclassified points lie in the strip induced

by the vertical line through v and the vertical line through v′, see also Figure 7.10.

The algorithm now handles all points of U lying above vv′ (the points below the line are handled in a

similar fashion). Let B+ be the set of vertices of B in the top chain. Note that B+ consists of at most O(log n)

vertices. For each vertex v of B+, the algorithm performs line cleaning on the vertical line going through v.

This results in O(log n) vertical pockets, where all vertical lines passing originally through B+ are now clean.

The algorithm repeatedly picks a vertical pocket. If the pocket contains less than three points the algorithm

queries the oracle for the classification of these points, and continues to the next pocket. Otherwise, the

algorithm performs a vertical pocket splitting operation, as described above. The algorithm stops when

there are no longer any pockets (i.e., all the points above the segment vv′ are classified). The algorithm then

runs the symmetric procedure below this segment vv′.

7.5.4 Analysis

Lemma 7.17. Given a point set P, and a convex polygon σ that is an inner fence for P ∩ C; that is, P ∩ C ⊆ σ ⊆ C.

Then, there is a convex polygon π, such that

(A) P ∩ C ⊆ π ⊆ σ.

(B) |π| ≤ 2 |σ| (where |Q| denotes the number of vertices of the polygon Q).

(C) Every edge of π lies on a line of L(P), see Eq. (7.1).

Proof: Any edge e of σ that does not contain any point of P on it can be moved parallel to itself into the

polygon until it passes through a point of P. Next, split the edges that contain only a single point of P, by

adding this point as a vertex.
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Figure 7.11: Constructing the polygon π from an inner fence σ.

Consider a vertex v of the polygon that is not in P— and consider the two adjacent vertices u, w, which

must be in P. If4uvw \ uw contains no point of P, then we delete v from the polygon and replace it by the

edge uw. Otherwise, move v towards u, until the edge vw hits a point of P. Next, move v towards w, till the

edge vu hits a point of P. See Figure 7.11.

Repeating this process so that all edges contain two points of P means that properties (A) and (C) are met.

Additionally, the number of edges of the new polygon π is at most twice the number of edges of σ, implying

property (B). QED.

Consider the inner and outer fences Fin and Fout of P in relation to C. Applying Lemma 7.17 to Fin, results

in a convex polygon π that separates P ∩ C from ∂C, that has at most 2 |Fin| vertices. Let V be the set of all

vertices of the polygons Fin, Fout and π.

The following two Lemmas state that if a vertical pocket Υ containing no vertex of V, then all points in Υ

can be classified using O(log n) oracle queries. Finally, we analyze the scenario when Υ contains at least one

vertex of V.

Lemma 7.18. Let Υ be a vertical pocket created during the algorithm with current inner approximation B. Suppose

that V ∩ Υ = ∅, then all points in P ∩ Υ are outside C.

Proof: Assume without loss of generality that Υ lies above B. Let U = P ∩ Υ be the set of unclassified points

in the pocket. Note that Υ is bounded by two vertical lines that were previously cleaned.

By assumption, Υ does not contain any vertex of π. It follows that there is a single edge of π that intersects

the two vertical lines bounding Υ. Let uL, uR be these two intersection points, one lying on each line. By

definition, we have uL, uR ∈ C. Furthermore, uL, uR lie on lines of L(P) by construction of π. Since both

vertical lines bounding Υ were cleaned, it must be that the segment uLuR ⊆ B. Since all points of U are

above B, this implies that U lies above uLuR and thus above π. Namely, all points of U are outside C. QED.

Lemma 7.19. Let Υ be a vertical pocket with V ∩ Υ = ∅. Then during the vertical pocket splitting operation applied

to Υ, all oracle queries are outside C. In particular, all points of P ∩ Υ are classified after O(log n) oracle queries.
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Proof: Let U = P ∩ Υ. By Lemma 7.18, all points of U lie outside C. Assume that the first statement of the

Lemma is false, and let U′ ⊆ U be the set of unclassified points such that z was the centerpoint for U′ and

z ∈ C. Now z is inside a triangle induced by three points of U′. Namely, there are (at least) two points

outside C in this pocket that are not mutually visible to each other with respect to C. But this implies that

Fout must have a vertex somewhere inside the vertical pocket Υ, which is a contradiction.

Hence, all oracle queries made by the algorithm are outside C. Each such query results in a constant

reduction in the size of U, since the query point is a centerpoint of the unclassified points. It follows that

after O(log |U|) = O(log n) queries, all points in Υ are classified. QED.

Theorem 7.4. Let C be a convex body provided via a separation oracle, and let P be a set of n points in the plane.

The improved classification algorithm performs O
([

1 +�(P, C)
]

log2 n
)

oracle queries. The algorithm correctly

identifies all points in P ∩ C and P \ C.

Proof: The initial stage involves two directional climbs and O(log n) line cleaning operations, and thus

requires O(log2 n) queries.

A vertical pocket that contains a vertex of V is charged arbitrarily to any such vertex. Since the number of

points in a pocket reduces by at least a factor of 1/3 during a split operation, this means that a vertex of V is

charged at most O(log n) times. Each time a vertex gets charged, it has to pay for the O(log n) oracle queries

that were issued in the process of creating this pocket, and later on for the price of splitting it. Thus, we only

have to account for queries performed in vertical pockets that do not contain a vertex of V. By Lemma 7.19,

such a pocket will have all points inside it classified after O(log n) oracle queries.

However, the above implies that there are at most O([1 +�(P, C)] log n) vertical pockets with no vertex

of V throughout the algorithm execution. Since handling such a pocket requires O(log n) queries, the bound

follows. QED.

7.6 LOWER BOUNDING A CONVEX FUNCTION, AGAIN

In this section we revisit a problem studied in Chapter 3. Namely, the problem of minimizing a convex

function given oracle access to its gradient computation, see Section 3.3p38.

Suppose we are given a set of n points P in the plane and a convex function f : R2 → R. Our goal is to

compute the point in P minimizing minp∈P f (p). Given a point p ∈ R2, assuming that we can evaluate f

and the derivative of f at p efficiently, we show that the point in P minimizing f can be computed using

O(9P log2 n) evaluations to f or its derivative.

Recall the level set (Definition 3.3p38) and subgradient (Definition 3.4p38) of a function f . Let α =

minp∈P f (p). We have that L f (α) ∩ P = {p ∈ P | f (p) = α} and L f (α
′) ∩ P = ∅ for all α′ < α. Hence, the

problem is reduced to determining the smallest value r such that L f (r) ∩ P is non-empty.
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Lemma 7.20. Let P be a collection of n points in the plane. For a given value r, let Cr = L f (r). The set Cr ∩ P can

be computed using O(9P log n) evaluations to f or its derivative. If T is the time needed to evaluate f or its derivative,

the algorithm can be implemented in O(n log2 n log log n + T · 9P log n) expected time.

Proof: The Lemma follows by applying Theorem 7.1. Indeed, let Cr = L f (r) be the convex body of interest.

It remains to design a separation oracle for Cr.

Given a query point z ∈ R2, first compute c = f (z). If c ≤ r, then report that z ∈ Cr. Otherwise, c > r.

In this case, compute some gradient vector v in ∂ f (z). Using the vector v, we can obtain a line ` tangent to

the boundary of L f (c) at z. As L f (r) ⊆ L f (c), ` is a separating line for z and Cr, as desired. As such, the

number of separation oracle queries needed to determine Cr ∩ P is bounded by O(9P log n) by Theorem 7.1.

The implementation details of Theorem 7.1 are given in Lemma 7.5. QED.

The algorithm Let α = minp∈P f (p). For a given number r ≥ 0, set Pr = L f (r) ∩ P. We develop a

randomized algorithm to compute α.

Set P0 = P. In the ith iteration, the algorithm chooses a random point pi ∈ Pi−1 and computes ri = f (pi).

Next, we determine Pri using Lemma 7.20. In doing so, we modify the separation oracle of Lemma 7.20

to store the collection of queries Si ⊆ P that satisfy f (s) = ri for all s ∈ Si. We set Pi+1 = Pri \ Si. Observe

that all points p ∈ Pi+1 have f (p) < ri. The algorithm continues in this fashion until we reach an iteration j

in which
∣∣Pj+1

∣∣ ≤ 1. If Pj+1 = {q} for some q ∈ P, output q as the desired point minimizing f . Otherwise

Pj+1 = ∅, implying that Prj = Sj, and the algorithm outputs any point in the set Sj.

Analysis We analyze the running time of the algorithm. To do so, we argue that the algorithm invokes the

algorithm in Lemma 7.20 only a logarithmic number of times.

Lemma 7.21. In expectation, the above algorithm terminates after O(log n) iterations.

Proof: Let V = { f (p) | p ∈ P} and N = |V|. For a number r, define Vr = {i ∈ V | i ≤ r}. Notice that we can

reinterpret the algorithm described above as the following random process. Initially set r0 = maxi∈V i. In

the ith iteration, choose a random number ri ∈ Vri−1 . This process continues until we reach an iteration j in

which
∣∣∣Vrj

∣∣∣ ≤ 1.

We can assume without loss of generality that V = {1, 2, . . . , N}. For an integer i ≤ N, let T(i) be the

expected number of iterations needed for the random process to terminate on the set {1, . . . , i}. We have

that T(i) = 1 + 1
i−1 ∑i−1

j=1 T(i− j), with T(1) = 0. This recurrence solves to T(i) = O(log i). As such, the

algorithm repeats this random process O(log N) = O(log n) times in expectation. QED.

Lemma 7.22. Let P be a set of n points in R2 and let f : R2 → R be a convex function. The point in P minimizing

f can be computed using O(9P log2 n) evaluations to f or its derivative. The bound on the number of evaluations

holds in expectation. If T is the time needed to evaluate f or its derivative, the algorithm can be implemented in

O(n log3 n log log n + T · 9P log2 n) expected time.
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Proof: The result follows by combining Lemma 7.20 and Lemma 7.21. QED.

7.6.1 The discrete geometric median

Let P be a set of n points in Rd. For all x ∈ Rd, define the function f (x) = ∑q∈P−x ‖x− q‖. The discrete

geometric median is defined as the point in P minimizing the quantity minp∈P f (p).

Note that f is convex, as it is the sum of convex functions. Furthermore, given a point p, we can compute

f (p) and the derivative of f at p in O(n) time. As such, by Lemma 7.22, we obtain the following.

Lemma 7.23. Let P be a set of points in R2. Then the discrete geometric median of P can be computed in O(n log2 n ·
(log n log log n + 9P)) expected time.

Remark 7.1. For a set of n points P chosen uniformly at random from the unit square, it is known that in

expectation 9P = Θ(n1/3) [8]. As such, the discrete geometric median for such a random set P can be

computed in O(n4/3 log2 n) expected time.
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Part IV

Conclusions and open problems
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8 Conclusion

“
Do not ask whether a statement is true until you know what it means.

— Errett Bishop

We conclude this thesis with some discussion of future work and problems left open from each chapter.

8.1 GEOMETRIC ORDERS

In Chapter 2, we showed that any bounded subset of Rd has a collection of “few” orderings which

captures proximity. This readily led to simplified and improved approximate dynamic data structures for

many fundamental proximity-based problems in computational geometry. Beyond these improvements, we

believe that the new technique could potentially be simple enough to be useful in practice, and could be

easily taught in an undergraduate level class (replacing, for example, well-separated pair decomposition—a

topic that is not as easily accessible).

We expect other applications to follow from the technique presented. For example, recently Buchin

et al. [27] presented a near linear-sized construction for robust spanners. The idea is to build a robust spanner

in one dimension, and then obtain a robust spanner in higher dimensions by applying the one-dimensional

construction using the locality-sensitive orderings.

In terms of open problems, it would be interesting to determine the minimum collection of orders needed

that still obey the locality-sensitive ordering properties.

Open Problem 8.1. Does there exist a collection of locality-sensitive orderings of size Od(1/εd)?

For general metric spaces with doubling dimension λ, Filtser and Le [66] recently showed there exist

locality-sensitive orderings of size O(1/εO(λ)). However, an initial estimate of the hidden constants inside

the exponent O(λ) seem to be quite large, and it is an open problem to improve these hidden constants.

8.2 GEOMETRIC CENTERS

In Chapter 3 we gave an improved randomized algorithm for computing an approximate centerpoint of a

point set. Namely, we showed that a centerpoint of quality arbitrarily close to Ω(1/d2) can be computed in
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time Õ(d7). The main open problem here is to develop any polynomial time algorithm which computes a

better quality centerpoint. As far as the author is aware, obtaining an algorithm computing a Ω(1/d1.99)-

centerpoint in poly(n, d) time is open. All current randomized approaches are based on the use of Radon

points (see Definition 3.2p30). We believe that a new idea is needed to obtain an efficient algorithm for

computing a better quality centerpoint.

There are many questions one can ask about centerpoints. One particular question of interest is: a more

efficient algorithm for computing the centerpoint on a grid of points. As we know by now, for general

point sets, a Ω(1/(d + 2)2)-centerpoint can be computed in Õ(d7) time. For d ≥ 2, exact centerpoints can be

computed in O(nd−1 + n log n) expected time [33].

Open Problem 8.2. Let P ⊆ JUKd for some integer U, where JUK = {0, . . . , U − 1}. Can anything better be

achieved in this restricted setting, even for d = 3? Anything polynomial in n and U?

Chapter 4 presented some variations on weak ε-nets. Of particular interest to the author is the notion of

center nets, and whether there exist any other interesting constructions. Recall that Theorem 4.5 showed the

existence of (ε, α)-center nets, where α ≈ 1/(d log(1/ε)) and has size Õ((d2/ε)d2
). However, observe that α

depends on ε in the construction. Can we eliminate this dependency?

Open Problem 8.3. Can one obtain a construction of (ε, α)-center nets when ε and α are both given as parameters?

Naturally, as α grows, we would expect the size of the net to shrink.

The main open problem left in Section 4.5 is bounding the size of (k, ε)-nets in the general case. That is,

the input is a set P of n points in Rd, and we would like to compute a minimum set of k-flats which stab all

convex bodies containing at least εn points of P. As noted in Section 4.1, there is a (k, ε)-net of asymptotically

the same size as of a weak ε-net in Rd−k. This follows by projecting the point set to a subspace of dimension

d− k, constructing a regular weak ε-net, and lifting the net back to the original space. Can one do better

than this somewhat naive construction?

Note that it is easy to show a lower bound of size Ω(1/ε) for (1, ε)-nets in the general case. Take a point

set that consists of d2/εe equally sized clusters of tightly packed points, such that no line passes through

three clusters. Namely, our sublinear results in 1/ε are special for the uniform measure on the hypercube.

In Chapter 5, we showed that the yolk of a set of n points in Rd can be computed in expected time

Od(nd−1 log n). The natural open problem is to improve the running times for computing the yolk (and

extremal yolk) even further. It seems believable, that for d > 3, the log factors in Theorem 5.1 and Theorem 5.2

might not be necessary. We leave this as an open problem for further research. Another potential direction for

further research is to develop efficient algorithms for approximating the radius the yolk in higher dimensions.

For example, in three dimensions we showed that the yolk can be computed exactly in O(n2) expected time,

see Remark 5.1p74. Can we obtain a near-linear time approximation algorithm?
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Open Problem 8.4 (Approximating the yolk). Does there exist an FPTAS1 for approximating the radius of the

yolk of n points in R3 such that the dependency on n in the running time is linear (or subquadratic)?

In addition to the yolk, there are other variations of voting games which may be of interest to the

community. A different generalization of the plurality point (the yolk is only one such generalization) is the

finagle of a point set [154]. For a point set P ⊂ R2, the finagle ball is the ball B of smallest radius such that

for any challenger q ∈ R2, there is a response p ∈ B such that p beats q.

Open Problem 8.5 (Computing the finagle). How quickly can the finagle ball be computed or approximated?

We are not aware of any previous work studying the computational aspects of the finagle ball.

Recall that p beats q if there are more points of P closer to p than q. Less formally, q may initially beat the

center c of B, but c is allowed to “finagle” a better response in a second round of interaction to obtain p,

which beats q.

A slightly easier problem might be the following.

Open Problem 8.6 (The pseudo-finagle). Compute the smallest ball B (which we call the pseudo-finagle) such

that for any q ∈ R2, more than half of the points of P are closer to B than q. This removes the one round of interaction

between the challenger and responder.

Another generalization of the plurality point studied recently by Aronov et al. is the β-plurality point

[11]. Here, the authors study a model in which given an existing policy p ∈ R2, a voter v ∈ R2 will swap to

a competing policy q ∈ R2 if and only if ‖q− v‖ ≤ β‖p− v‖, for some β ∈ (0, 1]. As such, a voter v swaps

to a different policy only if they have a strong incentive to do so. For a given β ∈ (0, 1] and set of n voters P,

a point p is a β-plurality point if for all challengers q ∈ R2, the number of voters in P who swap to the policy

q is less than n/2.

Naturally, one is interested in how quickly such a β-plurality point for P can be computed (if it exists),

given β. Additionally, one can also ask to compute the largest value β?(P) such that P admits a β?(P)-

plurality point. Aronov et al. [11] give an Od(nd2
) time algorithm for computing β?(P). It is possible that

the running time of this exact algorithm can be improved. In addition, the authors of [11] develop an

approximation algorithm, which returns a value β such that β ≥ (1− ε)β?(P) and runs in time Õd(n2/εO(d))

(where Õ hides polylog(n, 1/ε) factors).

There are many other computationally interesting voting games. For example, the plurality point is simply

a point which beats all other policies in the policy space. When no plurality point exists, the yolk and finagle

can be interpreted as capturing a collection of points which beat many—but not all—policies. Rather than

considering such objects of constant description complexity, another possible generalization is to consider a

finite set of points which collectively beat all other policies.

1An optimization problem admits an FPTAS (fully-polynomial time approximation scheme) if there exists an algorithm which
(1 + ε)-approximates the problem and has running time poly(n, 1/ε).
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Open Problem 8.7 (One policy always wins enough). Let α = 1/2− ε. Suppose we want to choose k := k(ε)

policies Q such that for any p ∈ R2, there exists a q ∈ Q such that at least αn voters of P prefer q to p. Note that

when ε = 1/6, k = 1 by choosing the centerpoint for P. What is the right choice of k, depending on ε? Can these

policies Q be constructed efficiently?

We are not aware of any previous work on the precise formulation of the problem defined above.

8.3 GEOMETRIC SEPARATION

In Chapter 6, we showed that a set of n points drawn uniformly at random from the unit square can be

separated by O(n2/3) lines, and require Ω(n2/3 log log n/ log n) separating lines. The key open problem

suggested by our work is as follows.

Open Problem 8.8. Can the lower bound of Theorem 6.3 be improved so that it matches the upper bound O(n2/3)

up to a constant?

In Section 6.5 we developed an efficient randomized algorithm for approximating the separability of

a point set. Now, consider the bichromatic version of the problem: given a set of red points R and blue

points B in the plane, define sep(R, B) as the minimum number of lines needed to separate all red-blue pairs

of points. As mentioned in Remark 6.1, the separability of a monochromatic point set of size n is Ω(
√

n)

in the plane. However in the bichromatic setting, there exist configurations of red and blue points with

sep(R, B) = 1. While our current algorithm should extend to the bichromatic case, the algorithm itself is not

any faster and provides the same guarantees as for the monochromatic case. For this reason, one possible

direction for further research is to study the bichromatic problem, and obtain approximation algorithms

which are much more efficient than our proposed algorithm when sep(R, B) is sufficiently smaller than
√

n.

In Chapter 7 we presented various algorithms for classifying points with oracle access to an unknown

convex body. As far as the author is aware, this problem has not been studied within the community

previously. However we believe that this is an interesting and natural problem. We now pose some open

problems.

The first question to ask is if the algorithm presented in Theorem 7.4, which makes O(�(P, C) log2 n)

queries, can be reduced to O(�(P, C) log n). This seems surprisingly challenging. In particular, the algorithm

of Theorem 7.4 is not natural, and the analysis is somewhat complicated. It is an open problem to simplify

the algorithm and its analysis. Alternatively, one can hope to develop algorithms in which the number of

queries is parameterized by different functions of the input instance.

Additionally, while we get some results in 3D, we do not have an algorithm for which the number of

queries matches the lower bound (i.e., separation price) up to polylog(n) factors. One can generalize the

notion of separation price to higher dimensions, but the best solution we have in 3D so far is the greedy

approach (and in general, 9P can be much larger than �(P, C)).
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We currently have no interesting algorithms for this problem for d ≥ 4. The greedy algorithm naturally

extends, however the number of queries made would most likely involve factors of the form 9P
O(d), which

is only interesting when 9P � n1/d. It would be interesting to try and develop efficient algorithms in higher

dimensions.

Another interesting direction for research is the meta problem of finding geometric problems and oracles (or

computational models) to work with. Studying various geometric problems assuming access to a separation

oracle, as done in Chapter 7, is only one such possible research direction. One can also consider the

problem of learning non-convex bodies, and what type of oracles would be interesting from an algorithmic

perspective.

Open Problem 8.9 (Learning non-convex bodies). Do there exist active-learning algorithms for non-convex

bodies under a suitable computational model?

Clearly, if the body is non-convex, the separation oracle is no longer properly defined. Here is one

proposed model: If a query point is inside the body, then the oracle returns the radius of the largest disk

contained inside the body centered at q. Otherwise, it returns the radius of the largest disk which is disjoint

from the body and centered at q. It may be also interesting to restrict the class of non-convex bodies

considered (for example, by imposing that the boundary has bounded curvature).

Recently, Ashur and Har-Peled [14] studied various geometric problems with different oracles. For

example, they study the undecided LP problem, in which one is given a collection of hyperplanes but not the

halfspaces induced by them. The goal is to find a feasible point in this linear program. For the undecided

LP problem, they consider two types of oracle queries: exposure queries (given a hyperplane h, returns the

halfspace associated with h), and separation oracle queries (given a point p, either return that p is feasible

or return a halfspace bounded by one of the input hyperplanes that violates the feasibility of p). These are

excellent examples of interesting problems to study, and provide a way for new oracles and computational

models to be proposed. We anticipate much more progress on these class of problems in the future.
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